基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
对具有耗散项的Musca domestica苍蝇模型的波前解进行研究,在耗散充分小的情况下,运用几何奇异摄动理论证明其波前解是持续的,即如果开始时种群数量非零,那么它最终将稳定于一个常态.
推荐文章
具有耗散和阻尼项的Kirchhoff型方程吸引子的存在性
Kirchhoff型方程
Gronwall引理
条件(C)
吸引子
广义Burgers-BBM方程波前解的持续性
广义Burgers-BBM方程
波前解
几何奇异摄动理论
持续性
具有饱和项的互惠模型正解的存在性
正解
不动点指标
最大值原理
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 具有耗散项的Musca domestica苍蝇模型波前解的持续性
来源期刊 西华大学学报(自然科学版) 学科 数学
关键词 具有耗散项的Musca domestica苍蝇模型 几何奇异摄动 波前解 持续性
年,卷(期) 2016,(2) 所属期刊栏目 基础学科
研究方向 页码范围 94-99
页数 6页 分类号 O175.14
字数 3345字 语种 中文
DOI 10.3969/j.issn.1673-159X.2016.02.018
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘芳 华侨大学数学科学学院 3 16 1.0 3.0
2 傅仰耿 华侨大学数学科学学院 4 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (3)
共引文献  (1)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1976(2)
  • 参考文献(1)
  • 二级参考文献(1)
1979(2)
  • 参考文献(1)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
具有耗散项的Musca domestica苍蝇模型
几何奇异摄动
波前解
持续性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西华大学学报(自然科学版)
双月刊
1673-159X
51-1686/N
大16开
四川省成都市金牛区
1982
chi
出版文献量(篇)
3399
总下载数(次)
6
总被引数(次)
16135
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导