作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了克服K-means聚类算法的不足,提出了一种改进的人工蜂群算法。通过在蜜源搜索策略中加入动态调整因子,使得算法在不同的进化时期能够自动地调整搜索范围,增强了算法的全局搜索能力和局部开采能力。引入了包含更多最优解信息的中心解思想,提高了蜂群的搜索效率,加快了算法的收敛速度。利用改进后的蜂群算法来优化K-means算法,以改善聚类效果的性能。试验结果表明,优化后的K-means 算法具有较强的稳定性,且聚类效果有了明显改善。
推荐文章
一种改进的K-means聚类算法
聚类分析
K-means算法
离群点数据
一种基于密度的k-means聚类算法
聚类
k-means
信息熵
近邻密度
孤立点
一种改进K-means聚类的FCMM算法
K-means聚类
萤火虫
最大最小距离
Tent映射
混沌搜索
基于增强蜂群优化与 K-means 的文本聚类算法
蜂群算法
公平操作
克隆操作
多样性
局部提炼
文本聚类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于改进蜂群的K-means聚类算法
来源期刊 长沙理工大学学报(自然科学版) 学科 工学
关键词 聚类 K-means算法 人工蜂群算法 中心解 动态调整因子
年,卷(期) 2016,(4) 所属期刊栏目 【计算机与信息工程】
研究方向 页码范围 85-89
页数 5页 分类号 TP301
字数 4300字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 罗可 长沙理工大学计算机与通信工程学院 92 1085 16.0 28.0
2 易斌 长沙理工大学计算机与通信工程学院 2 9 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (99)
共引文献  (241)
参考文献  (10)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1975(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(9)
  • 参考文献(0)
  • 二级参考文献(9)
2008(11)
  • 参考文献(0)
  • 二级参考文献(11)
2009(8)
  • 参考文献(0)
  • 二级参考文献(8)
2010(11)
  • 参考文献(1)
  • 二级参考文献(10)
2011(22)
  • 参考文献(1)
  • 二级参考文献(21)
2012(11)
  • 参考文献(0)
  • 二级参考文献(11)
2013(8)
  • 参考文献(3)
  • 二级参考文献(5)
2014(6)
  • 参考文献(4)
  • 二级参考文献(2)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
聚类
K-means算法
人工蜂群算法
中心解
动态调整因子
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
长沙理工大学学报(自然科学版)
季刊
1672-9331
43-1444/N
长沙市(雨花区)万家丽南路2段960号
chi
出版文献量(篇)
1425
总下载数(次)
2
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导