流形学习可以用于发现大型高维数据集的内在结构,并给出理解该数据集的潜在方式,已被视为一种有效的非线性降维方法.近年来,新数据点不断地从数据流中产生,将改变已有数据点及其邻域点的坐标,传统流形学习算法不能有效地用于寻找高维数据流的内在信息.为了解决该问题,本文提出了一种基于迭代分解的增量流形学习算法IMLID(Incremental Manifold Learning Algorithm Based on Iterative Decomposition),可以检测到数据流形中的逐步变化,校准逐渐变化中的流形,可提高在取样于真实世界的特征集上分类效果的精确率,利用真实数据集进行实验验证,结果表明本文提出的算法是有效的,与其他相关算法相比,其性能具有优势,在模式识别、生物信息等领域具有应用价值.