基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
定期存款一直以来都是银行的主要资金来源,而电话营销也成为一种低成本,广受银行欢迎的营销模式。因此,如何提高电话营销成功率成为银行急需解决的重要问题。其中,影响客户订购定期存款的因素复杂多样,而这些因素之间可能存在多重共线性,如果银行不加选择地引入众多影响因素来进行订购定期存款的预测,往往不能取得良好的预测效果,甚至产生错误的决策。在统计学习方法中,LASSO方法可以同时进行参数估计和变量选择,所以本文提出了基于LASSO与支持向量机的组合预测方法。同时,与SVM、神经网络、LASSO-神经网络方法的预测效果进行比较,验证了LASSO-支持向量机组合预测方法的拟合预测效果要优于另外三种预测方法。
推荐文章
基于LASSO-SVM的软件缺陷预测模型研究
软件缺陷预测
最小绝对值压缩与选择方法
特征选择
支持向量机
交叉验证
银行客户定期存款认购的统计决策研究
数据挖掘
客户定位
决策树
统计决策
定期存款所含嵌入期权的定价
定期存款
随机利率
定价
基于LASSO-SVM的软件缺陷预测模型研究
软件缺陷预测
最小绝对值压缩与选择方法
特征选择
支持向量机
交叉验证
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于LASSO-SVM模型的银行定期存款电话营销预测
来源期刊 统计学与应用 学科 经济
关键词 定期存款 电话营销 支持向量机 LASSO-支持向量机
年,卷(期) 2016,(3) 所属期刊栏目
研究方向 页码范围 289-298
页数 10页 分类号 F2
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王国长 暨南大学经济学院 9 10 2.0 3.0
2 徐扬 暨南大学经济学院 6 7 2.0 2.0
3 梅瑞婷 暨南大学经济学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
定期存款
电话营销
支持向量机
LASSO-支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
统计学与应用
双月刊
2325-2251
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
512
总下载数(次)
3
总被引数(次)
0
论文1v1指导