基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为实现用较少的训练样本对高分辨距离像进行识别,文中提出一种采用多任务稀疏学习的统计建模方法.该方法将各帧训练样本的统计建模视为单一的任务,由于各帧训练样本间不是完全独立而是相互关联的,因此,设定所有帧的训练样本采用同一个字典以实现帧间信息的共享.由于目标的不同以及同一目标的方位敏感性,通常很难确定各训练帧的相关性,而不相关任务间的联合学习将会降低识别性能.因此,采用Bernoulli-Beta先验根据给定训练数据自动学出每一帧需要的原子,而通过不同帧间共享的原子个数就可以判断它们的相关性,从而实现自适应的多任务学习.基于实测高分辨距离像数据的识别实验,证明了文中方法的有效性.
推荐文章
一种优化稀疏分解的雷达目标识别方法
稀疏分解
粒子群优化
自适应变化
高分辨率距离像
全极化雷达的多任务压缩感知目标识别方法
雷达目标识别
全极化高分辨距离像
多任务压缩感知
基于插值HRRP和SVM的雷达目标识别方法
雷达目标识别
支持向量机
插值
高分辨一维距离像
基于增强字典稀疏表示分类的SAR目标识别方法
合成孔径雷达
目标识别
增强字典
稀疏表示分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 采用多任务稀疏学习的雷达HRRP小样本目标识别
来源期刊 西安电子科技大学学报(自然科学版) 学科 工学
关键词 雷达目标识别 高分辨距离像 稀疏贝叶斯 多任务学习
年,卷(期) 2016,(2) 所属期刊栏目
研究方向 页码范围 23-28
页数 6页 分类号 TN959.1+7
字数 5304字 语种 中文
DOI 10.3969/j.issn.1001-2400.2016.02.005
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘宏伟 西安电子科技大学雷达信号处理国家重点实验室 231 3070 26.0 37.0
2 杜兰 西安电子科技大学雷达信号处理国家重点实验室 46 794 18.0 27.0
3 徐丹蕾 西安电子科技大学雷达信号处理国家重点实验室 9 44 3.0 6.0
4 王鹏辉 西安电子科技大学雷达信号处理国家重点实验室 18 123 7.0 11.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (8)
共引文献  (7)
参考文献  (5)
节点文献
引证文献  (9)
同被引文献  (15)
二级引证文献  (1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(5)
  • 引证文献(4)
  • 二级引证文献(1)
研究主题发展历程
节点文献
雷达目标识别
高分辨距离像
稀疏贝叶斯
多任务学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安电子科技大学学报(自然科学版)
双月刊
1001-2400
61-1076/TN
西安市太白南路2号349信箱
chi
出版文献量(篇)
4652
总下载数(次)
5
总被引数(次)
38780
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导