基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对基于小样本集人脸图像的识别能力低,计算复杂度高的问题,提出了一种基于样本融合的核稀疏表示方法(KSRMSF).该方法首先通过在原始样本集中添加镜像训练样本和对称训练样本,扩大了原始样本集的规模,接着使用基于高斯核函数的算法从扩充后的训练样本集中挑选若干个最近邻训练样本,利用这组最近邻样本的线性组合表示待识别的测试样本,根据L2范式的结果对测试样本进行分类,通过修改最近邻样本数获得更高的分类精度.实验结果表明该方法比同类识别算法有更好的识别效果.
推荐文章
基于稀疏表示与特征融合的人脸识别方法
人脸识别
稀疏表示
低秩恢复
特征融合
鲁棒性
泛化性能
基于核稀疏表示的人脸人耳融合识别算法的研究
融合识别
核稀疏表示
特征提取
加权串联融合
正交匹配追踪算法
鲁棒性
基于l2-范数重构样本约束的稀疏表示人脸识别方法
稀疏表示
人脸识别
联合表示
重构样本
基于稀疏表示的快速l2-范数人脸识别方法
人脸识别
稀疏表示
特征融合
字典缩减
正则化最小二乘法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于样本融合的核稀疏人脸识别方法
来源期刊 南京师大学报(自然科学版) 学科 工学
关键词 人脸识别 样本融合 核诱导 稀疏表示 N最近邻
年,卷(期) 2016,(4) 所属期刊栏目 数学与计算机科学
研究方向 页码范围 31-37
页数 7页 分类号 TP391.4
字数 5666字 语种 中文
DOI 10.3969/j.issn.1001-4616.2016.04.007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 詹永照 江苏大学计算机科学与通信工程学院 189 1744 21.0 31.0
2 程显毅 南通大学计算机科学与技术学院 30 105 6.0 9.0
3 丁卫平 南通大学计算机科学与技术学院 61 406 10.0 17.0
4 沈学华 南通大学计算机科学与技术学院 17 79 4.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1967(1)
  • 参考文献(1)
  • 二级参考文献(0)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人脸识别
样本融合
核诱导
稀疏表示
N最近邻
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京师大学报(自然科学版)
季刊
1001-4616
32-1239/N
大16开
南京市宁海路122号南京师范大学
1955
chi
出版文献量(篇)
2319
总下载数(次)
4
总被引数(次)
17979
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导