基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对训练样本字典学习仅包含全局信息、缺乏局部信息的不足,引入与类别相关的原子字典,提出基于原子与分子字典联合扩展的加权稀疏表示人脸识别方法.首先,对各类训练样本进行PCA学习,得到带标记的训练样本基,构造PCA基原子字典,同时将训练样本字典作为分子字典.进而,利用原子字典与分子字典结合得到扩展字典模型.测试时,根据测试样本与扩展字典基之间的距离进行加权得到与当前测试样本关联的重构字典集,最后对测试样本稀疏重构,利用残差进行分类判别.为验证本文方法有效性,分别在AR、Georgia Tech 和CMU PIE人脸数据库上进行实验.
推荐文章
稀疏表示人脸识别的关键问题分析
人脸识别
压缩感知
稀疏表示
鲁棒性
基于SIFT稀疏表示的人脸识别算法
人脸识别
尺度不变特征变换
FisherVector
主成分分析
稀疏表示
基于流形的局部加权协从表示人脸识别
局部加权
协从表示
流形投影
人脸识别
计算机视觉
基于虚拟样本的协同表示人脸识别算法
人脸识别
协同表示
虚拟样本
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 原子-分子字典结合的联合扩展加权稀疏表示人脸识别算法
来源期刊 信号处理 学科 工学
关键词 人脸识别 稀疏表示 主成分分析 字典扩展 样本加权
年,卷(期) 2016,(7) 所属期刊栏目 算法研究
研究方向 页码范围 801-809
页数 9页 分类号 TP391.4
字数 6702字 语种 中文
DOI 10.16798/j.issn.1003-0530.2016.07.007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 胡正平 燕山大学信息科学与工程学院 160 1215 17.0 28.0
2 赵淑欢 燕山大学信息科学与工程学院 13 120 6.0 10.0
3 王蒙 燕山大学信息科学与工程学院 11 108 4.0 10.0
4 孙哲 燕山大学信息科学与工程学院 9 52 4.0 6.0
5 白帆 燕山大学信息科学与工程学院 2 10 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (6)
共引文献  (2)
参考文献  (15)
节点文献
引证文献  (6)
同被引文献  (5)
二级引证文献  (4)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(6)
  • 参考文献(6)
  • 二级参考文献(0)
2015(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(3)
  • 引证文献(2)
  • 二级引证文献(1)
2020(4)
  • 引证文献(1)
  • 二级引证文献(3)
研究主题发展历程
节点文献
人脸识别
稀疏表示
主成分分析
字典扩展
样本加权
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信号处理
月刊
1003-0530
11-2406/TN
大16开
北京鼓楼西大街41号
18-143
1985
chi
出版文献量(篇)
5053
总下载数(次)
13
总被引数(次)
32728
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
河北省自然科学基金
英文译名:
官方网址:
项目类型:
学科类型:
论文1v1指导