原文服务方: 安徽工业大学学报(自然科学版)       
摘要:
稀疏表示是一种高效的图像表示方法,且稀疏系数具有很好的稀疏性和可扩展性.基于稀疏表示的人脸识别能够提高识别率,增强鲁棒性.针对人脸识别在实际应用中遇到的问题,对稀疏表示人脸识别的方法、识别中遇到的关键问题及其解决办法进行综述.结果表明:稀疏表示人脸识别中,光照变化,可以通过增加不同光照的人脸图像训练样本解决;遮挡腐蚀,可以通过用加入误差字典来扩展过完备字典解决;姿势变化或未对准,可以通过对输入图像进行线性结构迭代变换解决;利用稀疏集中指数可以实现图像是否有效的判断.指出采用稀疏表示同时处理对准和连续遮挡的人脸图像识别,及识别准确性与实时性的提高是需进一步研究的方向.
推荐文章
基于SIFT稀疏表示的人脸识别算法
人脸识别
尺度不变特征变换
FisherVector
主成分分析
稀疏表示
基于虚拟样本的协同表示人脸识别算法
人脸识别
协同表示
虚拟样本
基于l2-范数重构样本约束的稀疏表示人脸识别方法
稀疏表示
人脸识别
联合表示
重构样本
基于离散余弦变换和稀疏表示的人脸识别
人脸识别
离散余弦变换
稀疏表示
词袋
局部特征
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 稀疏表示人脸识别的关键问题分析
来源期刊 安徽工业大学学报(自然科学版) 学科
关键词 人脸识别 压缩感知 稀疏表示 鲁棒性
年,卷(期) 2014,(2) 所属期刊栏目 计算机与信息
研究方向 页码范围 188-194
页数 7页 分类号 TP391.4
字数 语种 中文
DOI 10.3969/j.issn.1671-7872.2014.02.018
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 单建华 安徽工业大学机械工程学院 21 97 5.0 9.0
2 张晓飞 安徽工业大学机械工程学院 2 7 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (64)
参考文献  (19)
节点文献
引证文献  (5)
同被引文献  (27)
二级引证文献  (11)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(3)
  • 参考文献(1)
  • 二级参考文献(2)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(2)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(4)
  • 参考文献(2)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(6)
  • 参考文献(3)
  • 二级参考文献(3)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(3)
  • 引证文献(2)
  • 二级引证文献(1)
2019(5)
  • 引证文献(1)
  • 二级引证文献(4)
2020(6)
  • 引证文献(0)
  • 二级引证文献(6)
研究主题发展历程
节点文献
人脸识别
压缩感知
稀疏表示
鲁棒性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
安徽工业大学学报(自然科学版)
季刊
1671-7872
34-1254/N
大16开
1984-01-01
chi
出版文献量(篇)
2161
总下载数(次)
0
总被引数(次)
11633
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导