作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对训练样本图像和测试样本图像均存在光照、污染、遮挡等情况下的人脸识别问题,提出一种基于鲁棒主成分分析的群稀疏表示人脸识别方法(group sparse representation face recognition method based on robust principal component analysis,GSR-RPCA).该方法将人脸图像由空域变换到对数域,增强人脸图像的对比度,并通过结构非相关鲁棒主成分分析算法从训练样本图像矩阵D中分解出干净的低秩部分人脸图像矩阵A和误差图像矩阵E,以增强恢复数据的鉴别力;学习A与D之间的低秩映射关系矩阵P,并用P将存在遮挡的测试样本映射到其潜在的子空间下,得到干净的测试样本y;计算y在A上的群稀疏表示系数,并利用类关联重构残差对测试人脸进行识别,获得测试人脸的所属类别.在CMU PIE,Extended Yale B和AR数据库上的实验结果显示,提出方法具有较高的识别率和较强的鲁棒性.
推荐文章
稀疏表示人脸识别的关键问题分析
人脸识别
压缩感知
稀疏表示
鲁棒性
基于l2-范数重构样本约束的稀疏表示人脸识别方法
稀疏表示
人脸识别
联合表示
重构样本
基于稀疏表示的快速l2-范数人脸识别方法
人脸识别
稀疏表示
特征融合
字典缩减
正则化最小二乘法
基于SIFT稀疏表示的人脸识别算法
人脸识别
尺度不变特征变换
FisherVector
主成分分析
稀疏表示
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于RPCA的群稀疏表示人脸识别方法
来源期刊 重庆邮电大学学报(自然科学版) 学科 工学
关键词 人脸识别 鲁棒主成分分析 低秩映射矩阵 群稀疏
年,卷(期) 2020,(3) 所属期刊栏目 计算机与自动化
研究方向 页码范围 459-468
页数 10页 分类号 TN391.4
字数 7370字 语种 中文
DOI 10.3979/j.issn.1673-825X.2020.03.016
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陶洋 重庆邮电大学通信与信息工程学院 162 715 14.0 21.0
2 胡静 重庆邮电大学通信与信息工程学院 4 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (61)
共引文献  (48)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(7)
  • 参考文献(2)
  • 二级参考文献(5)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(8)
  • 参考文献(1)
  • 二级参考文献(7)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(10)
  • 参考文献(1)
  • 二级参考文献(9)
2013(11)
  • 参考文献(3)
  • 二级参考文献(8)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(5)
  • 参考文献(3)
  • 二级参考文献(2)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人脸识别
鲁棒主成分分析
低秩映射矩阵
群稀疏
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
重庆邮电大学学报(自然科学版)
双月刊
1673-825X
50-1181/N
大16开
重庆南岸区
78-77
1988
chi
出版文献量(篇)
3229
总下载数(次)
12
总被引数(次)
19476
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
重庆市自然科学基金
英文译名:
官方网址:http://law.ddvip.com/law/2006-09/11584979384040.html
项目类型:重点项目
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导