针对现有无监督特征选择算法所选特征分类准确率不高的缺陷,提出两种新的无监督特征选择算法EDPFS(unsupervised Feature Selection algorithm based on Exponential Density Peaks)和 RDPFS(unsupervised Feature Selection algorithm based on the Reciprocal Density Peaks)。该两算法提出特征密度与特征距离的概念,并以此定义特征代表性与特征区分度,特征代表性越高表明特征越重要,特征区分度越高表明特征冗余度越小,以特征代表性与区分度之积作为特征重要性评价准则,采用基于特征子集的支持向量机分类正确率评价特征子集的分类性能。在8个 UCI机器学习数据库数据集和4个图像数据集上测试这两种新算法,以及多类簇特征选择方法、Laplacian分值特征选择方法、无监督判别特征选择方法和扩展的无监督特征选择方法,实验结果表明:以特征代表性与区分度之积定义的特征重要性评价准则是有效的,提出的两种基于该准则的无监督特征选择算法 EDPFS和RDPFS选择的特征子集具有很好的分类性能。