基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
网络入侵检测一直是网络安全领域中的研究热点,针对分类器参数优化难题,为了提高网络入侵检测准确性,提出一种改进粒子群算法和支持向量机相融合的网络入侵检测模型(IPSO-SVM)。首先将网络入侵检测率作为目标函数,支持向量机参数作为约束条件建立数学模型,然后采用改进粒子群算法找到支持向量机参数,最后采用支持向量机作为分类器建立入侵检测模型,并在 Matlab 2012平台上采用 KDD 999数据进行验证性实验。结果表明, IPSO-SVM 解决了分类器参数优化难题,获得更优的网络入侵分类器,提高网络入侵检测率,虚警率和漏报率大幅度下降。
推荐文章
改进支持向量机在网络入侵检测中的应用
粒子群优化算法
核主成分分析
支持向量机
入侵检测
粒子群算法和SVM的网络入侵检测
粒子群算法
支持向量机
网络入侵
检测算法
改进蚁群算法优化支持向量机的网络入侵检测
网络入侵
蚁群优化算法
支持向量机
参数优化
粒子群算法优化支持向量机的网络流量混沌预测
粒子群算法优化
支持向量机
网络流量
混沌预测
平均绝对误差
蚁群算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进粒子群算法和支持向量机的网络入侵检测
来源期刊 计算机系统应用 学科
关键词 网络入侵 特征子集 入侵检测分类器 支持向量机
年,卷(期) 2016,(6) 所属期刊栏目
研究方向 页码范围 269-273
页数 5页 分类号
字数 3346字 语种 中文
DOI 10.15888/j.cnki.csa.005304
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陶琳 河南工业职业技术学院电子信息工程系 22 61 5.0 7.0
2 郭春璐 河南工业职业技术学院电子信息工程系 10 22 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (80)
共引文献  (82)
参考文献  (12)
节点文献
引证文献  (6)
同被引文献  (31)
二级引证文献  (13)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(4)
  • 参考文献(1)
  • 二级参考文献(3)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(10)
  • 参考文献(0)
  • 二级参考文献(10)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(8)
  • 参考文献(0)
  • 二级参考文献(8)
2009(11)
  • 参考文献(1)
  • 二级参考文献(10)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(8)
  • 参考文献(1)
  • 二级参考文献(7)
2012(8)
  • 参考文献(2)
  • 二级参考文献(6)
2013(6)
  • 参考文献(2)
  • 二级参考文献(4)
2014(3)
  • 参考文献(2)
  • 二级参考文献(1)
2015(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(5)
  • 引证文献(3)
  • 二级引证文献(2)
2018(6)
  • 引证文献(2)
  • 二级引证文献(4)
2019(5)
  • 引证文献(0)
  • 二级引证文献(5)
2020(3)
  • 引证文献(1)
  • 二级引证文献(2)
研究主题发展历程
节点文献
网络入侵
特征子集
入侵检测分类器
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
总被引数(次)
57078
论文1v1指导