基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对基于支持向量机(Support Vector Machine,SVM)的间歇过程故障诊断准确率低的问题,结合间歇过程的时段特性,提出了一种基于子时段MPCA-SVM的间歇过程在线故障诊断方法.首先,利用多向主成分分析(Multi-way principal component analysis,MPCA)提取出间歇过程正常运行状态下的每个采样点的主成分,将相邻的且具有相同主成分个数的采样点归到同一粗划分时段内,再在每一个粗时段内利用相邻采样点的负载矩阵的角度信息作为相似性判据来细化分时段;其次,对每个时段建立MPCA在线过程监测模型,同时,利用MPCA提取每个时段内各个类型故障的特征,并用特征数据建立SVM故障诊断模型;最后,MPCA监测模型实施监测功能,当检测到故障时,相应对段的SVM故障诊断模型进行诊断.将该方法应用于青霉素发酵过程仿真平台进行验证,该方法相比于不分时段的SVM的故障诊断方法,平均可提高故障诊断准确率11%,实验结果表明了该方法的有效性和可行性.
推荐文章
基于KECA和FWA-SVM的间歇过程分时段故障诊断方法
间歇过程
核熵成分分析
烟花算法
支持向量机
K-means
青霉素仿真
基于MPCA-MDPLS的间歇过程的故障诊断
间歇过程
主元分析
判别部分最小二乘
故障诊断
一种基于改进MPCA的间歇过程监控与故障诊断方法
过程监控
故障诊断
多向主元分析
基于KECA和FWA-SVM的间歇过程分时段故障诊断方法
间歇过程
核熵成分分析
烟花算法
支持向量机
K-means
青霉素仿真
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于子时段MPCA-SVM的间歇过程在线故障诊断
来源期刊 计算机与应用化学 学科 工学
关键词 间歇过程 多向主成分分析 支持向量机 过程监测 故障诊断
年,卷(期) 2016,(4) 所属期刊栏目 研究论文
研究方向 页码范围 465-471
页数 7页 分类号 TP306+.3
字数 5005字 语种 中文
DOI 10.16866/j.com.app.chem20160417
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (88)
共引文献  (94)
参考文献  (12)
节点文献
引证文献  (8)
同被引文献  (20)
二级引证文献  (4)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(5)
  • 参考文献(0)
  • 二级参考文献(5)
1996(6)
  • 参考文献(0)
  • 二级参考文献(6)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(5)
  • 参考文献(1)
  • 二级参考文献(4)
2002(6)
  • 参考文献(0)
  • 二级参考文献(6)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(15)
  • 参考文献(0)
  • 二级参考文献(15)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(6)
  • 参考文献(1)
  • 二级参考文献(5)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(10)
  • 参考文献(1)
  • 二级参考文献(9)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(5)
  • 参考文献(3)
  • 二级参考文献(2)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(5)
  • 参考文献(2)
  • 二级参考文献(3)
2014(3)
  • 参考文献(2)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(4)
  • 引证文献(4)
  • 二级引证文献(0)
2019(7)
  • 引证文献(3)
  • 二级引证文献(4)
研究主题发展历程
节点文献
间歇过程
多向主成分分析
支持向量机
过程监测
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与应用化学
双月刊
1001-4160
11-3763/TP
大16开
北京中关村北二街2条1号
82-500
1984
chi
出版文献量(篇)
5704
总下载数(次)
10
总被引数(次)
27612
论文1v1指导