基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文针对过程神经元网络(Process Neural Network,PNN)模型学习参数较多,正交基展开后的梯度下降算法初值敏感、计算复杂、不易收敛等问题,结合极限学习机(ExtremeLearning Machine,ELM)的快速学习特性,提出了一种新型的极限学习过程神经元网络.学习过程中摒弃梯度下降算法的迭代调整策略,采用Moore-Penrose广义逆计算输出权值矩阵.同时为弥补极限学习机由于随机赋值造成的不足,利用粒子群算法(Particle SwarmOptimization,PSO)良好的全局搜索能力进行模型参数优化,获得紧凑的网络结构,提高了模型泛化能力.仿真实验以Henon混沌时间序列和太阳黑子预测为例,验证了网络的有效性.
推荐文章
一种基于高维粒子群算法的神经网络结构优化研究
高维BP神经网络
粒子群算法
神经网络
结构优化
一种基于量子粒子群的过程神经元网络学习算法
过程神经元网络
量子粒子群
网络训练
算法设计
基于改进粒子群优化算法的神经网络设计
粒子群算法
蚁群算法
信息素
神经网络设计
基于粒子群优化神经网络的卫星故障预测方法
故障预测
卫星
粒子群优化
神经网络
时间序列
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于粒子群优化的极限学习过程神经网络
来源期刊 华东师范大学学报(自然科学版) 学科 工学
关键词 过程神经元网络 极限学习机 粒子群 Moore-Penrose广义逆 网络训练
年,卷(期) 2016,(4) 所属期刊栏目 计算机科学
研究方向 页码范围 86-95
页数 10页 分类号 TP183
字数 5481字 语种 中文
DOI 10.3969/j.issn.1000-5641.2016.04.010
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘志刚 东北石油大学计算机与信息技术学院 33 104 6.0 8.0
2 李盼池 东北石油大学计算机与信息技术学院 93 344 9.0 11.0
3 许少华 山东科技大学信息科学与工程学院 30 56 4.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (89)
共引文献  (327)
参考文献  (22)
节点文献
引证文献  (6)
同被引文献  (0)
二级引证文献  (0)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(2)
  • 参考文献(0)
  • 二级参考文献(2)
1976(3)
  • 参考文献(1)
  • 二级参考文献(2)
1982(2)
  • 参考文献(0)
  • 二级参考文献(2)
1989(4)
  • 参考文献(0)
  • 二级参考文献(4)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
1998(5)
  • 参考文献(0)
  • 二级参考文献(5)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(11)
  • 参考文献(1)
  • 二级参考文献(10)
2001(5)
  • 参考文献(0)
  • 二级参考文献(5)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(7)
  • 参考文献(1)
  • 二级参考文献(6)
2004(12)
  • 参考文献(1)
  • 二级参考文献(11)
2005(7)
  • 参考文献(1)
  • 二级参考文献(6)
2006(8)
  • 参考文献(5)
  • 二级参考文献(3)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(5)
  • 参考文献(2)
  • 二级参考文献(3)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(7)
  • 参考文献(2)
  • 二级参考文献(5)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(3)
  • 引证文献(3)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
过程神经元网络
极限学习机
粒子群
Moore-Penrose广义逆
网络训练
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华东师范大学学报(自然科学版)
双月刊
1000-5641
31-1298/N
16开
上海市中山北路3663号
4-359
1955
chi
出版文献量(篇)
2430
总下载数(次)
5
相关基金
中国博士后科学基金
英文译名:China Postdoctoral Science Foundation
官方网址:http://www.chinapostdoctor.org.cn/index.asp
项目类型:
学科类型:
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导