基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
由于随机块模型能够有效处理不具有先验知识的网络,对其研究成为了机器学习、网络数据挖掘和社会网络分析等领域的研究热点.如何设计出具有模型选择能力的快速随机块模型学习算法,是目前随机块模型研究面临的一个主要挑战.提出一种精细随机块模型及其快速学习算法.该学习方法基于提出的模型与最小消息长度推导出一个新成本函数,利用期望最大化参数估计方法,实现了边评价模型边估计参数的并行学习策略,以此方式显著降低随机块模型学习的时间复杂性.分别采用人工网络与真实网络,从学习时间和学习精度两方面对提出的学习算法进行了验证,并与现有的代表性随机块模型学习方法进行了对比.实验结果表明:提出的算法能够在保持学习精度的情况下显著降低时间复杂性,在学习精度和时间之间取得很好的折衷;在无任何先验知识的情况下,可处理的网络规模从几百节点提高至几万节点.另外,通过网络链接预测的实验,其结果也表明了提出的模型及学习算法相比现有随机块模型和学习方法具有更好的泛化能力.
推荐文章
一种高效的随机混淆匿名算法
匿名算法
高速网络
随机数混淆
消息缓冲
一种新的混合高斯模型的学习算法
混合高斯模型
背景模型
学习算法
一种基于块的校正码书模型
复杂动态前景
运动物体检测
校正码书模型
HSV颜色空间
像素块
反馈校正机制
覆盖率一准确率曲线
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种高效的随机块模型学习算法
来源期刊 软件学报 学科 工学
关键词 网络数据挖掘 社会网络分析 随机块模型 模型选择 链接预测
年,卷(期) 2016,(9) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 2248-2264
页数 17页 分类号 TP108
字数 14957字 语种 中文
DOI 10.13328/j.cnki.jos.004855
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵学华 深圳信息职业技术学院数字媒体学院 9 21 2.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (23)
节点文献
引证文献  (9)
同被引文献  (17)
二级引证文献  (0)
1983(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(2)
  • 参考文献(2)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(4)
  • 参考文献(4)
  • 二级参考文献(0)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(6)
  • 参考文献(6)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(4)
  • 引证文献(4)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
网络数据挖掘
社会网络分析
随机块模型
模型选择
链接预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件学报
月刊
1000-9825
11-2560/TP
16开
北京8718信箱
82-367
1990
chi
出版文献量(篇)
5820
总下载数(次)
36
相关基金
吉林省自然科学基金
英文译名:
官方网址:http://kyc.nedu.edu.cn/xxcx/xmzl/sqsjddxs2.htm
项目类型:
学科类型:
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
广东省自然科学基金
英文译名:Guangdong Natural Science Foundation
官方网址:http://gdsf.gdstc.gov.cn/
项目类型:研究团队
学科类型:
论文1v1指导