基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于柘溪断面历史旬径流资料,选择1980年~ 2012年共33 a的降雨和流量数据经主成分分析处理后,分别作为多元线性回归模型、BP神经网络模型、Elman神经网络模型的训练样本,对模型参数进行训练;然后对样本进行模拟预报,统计模拟绝对误差和相对误差,同时预报柘溪断面2013年、2014年和2015年的年、汛期、季节和月尺度的流量,预报结果可精确到旬尺度,对比分析三种模型各时间尺度的预报结果,最终确定各模型在柘溪流域中长期水文预报过程中的作用.
推荐文章
基于联合主成分分析的宜昌站径流中长期预报
水文学
中长期径流预报
主成分分析
长江
遥相关
局域回归
基于主成分分析的BP神经网络长期预报模型
主成分分析
学习矩阵
BP神经网络
基于统计模型的西江枯季中长期径流预报研究
均生函数
周期分析
多元逐步回归
中长期径流预报
西江
中长期径流预报中PCA-IBP模型的改进算法研究
径流预报
主成分分析
BP神经网络
模型
算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于主成分分析的三种中长期预报模型在柘溪水库的应用
来源期刊 水力发电 学科 地球科学
关键词 多元线性回归 BP神经网络 Elman神经网络 中长期径流预报 主成分分析 柘溪水库
年,卷(期) 2016,(9) 所属期刊栏目 水文水资源
研究方向 页码范围 17-21
页数 5页 分类号 P338.2
字数 4126字 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (35)
共引文献  (54)
参考文献  (9)
节点文献
引证文献  (12)
同被引文献  (47)
二级引证文献  (1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(5)
  • 参考文献(0)
  • 二级参考文献(5)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
  • 引证文献(0)
  • 二级引证文献(0)
2018(6)
  • 引证文献(6)
  • 二级引证文献(0)
2019(6)
  • 引证文献(6)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
多元线性回归
BP神经网络
Elman神经网络
中长期径流预报
主成分分析
柘溪水库
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
水力发电
月刊
0559-9342
11-1845/TV
大16开
北京西城区德外六铺炕北小街2号
2-428
1954
chi
出版文献量(篇)
7774
总下载数(次)
11
总被引数(次)
33587
论文1v1指导