基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于流形学习的思想和理论方法,提出刻画流形信息的正则化的极端学习机(MELM)算法。该算法利用流形信息刻画数据的几何结构和判别信息,克服 ELM 在有限样本上学习不充分的问题;能够有效提取数据样本的判别信息避免数据样本信息重叠;利用最大边际准则有效解决类间散度矩阵和类内散度矩阵的奇异问题。为验证所提方法的有效性,实验使用普遍应用的图像数据,将 MELM 与 ELM 以及相关最新算法 RAFELM、GELM进行识别率和计算效率的对比。实验结果表明,该算法能够显著提高 ELM 的分类准确率和泛化能力,并且优于其他相关算法。
推荐文章
一种改进的极端学习机算法
单隐层前向神经网络
极端学习机
L1/2正则化
短期负荷预测的集成改进极端学习机方法
极端学习机
短期负荷预测
训练
集成技术
基于角度优化的鲁棒极端学习机算法
极端学习机
鲁棒激活函数
角度优化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 正则化流形信息极端学习机
来源期刊 通信学报 学科 工学
关键词 极端学习机 几何结构 流形信息 机器学习
年,卷(期) 2016,(11) 所属期刊栏目 学术论文
研究方向 页码范围 57-67
页数 11页 分类号 TP18
字数 6107字 语种 中文
DOI 10.11959/j.issn.1000-436x.2016213
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 闫德勤 辽宁师范大学计算机与信息技术学院 124 1071 15.0 28.0
2 刘德山 辽宁师范大学计算机与信息技术学院 57 349 9.0 17.0
3 楚永贺 辽宁师范大学计算机与信息技术学院 10 26 3.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (17)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(4)
  • 参考文献(4)
  • 二级参考文献(0)
2012(4)
  • 参考文献(4)
  • 二级参考文献(0)
2013(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(4)
  • 参考文献(4)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
极端学习机
几何结构
流形信息
机器学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
通信学报
月刊
1000-436X
11-2102/TN
大16开
北京市丰台区成寿路11号邮电出版大厦8层
2-676
1980
chi
出版文献量(篇)
6235
总下载数(次)
17
总被引数(次)
85479
论文1v1指导