原文服务方: 计算机测量与控制       
摘要:
极端学习机因其学习速度快、泛化性能强等优点,在当今模式识别领域中已经成为了主流的研究方向;但是,由于该算法稳定性差,往往易受数据集中噪声的干扰,在实际应用中导致得到的分类效果不是很显著;因此,为了提高极端学习机分类的准确性,针对数据集样本中带有噪声和离群点问题,提出了一种基于角度优化的鲁棒极端学习机算法;该方法利用鲁棒激活函数角度优化的原则,首先降低了离群点对分类算法的影响,从而保持数据样本的全局结构信息,达到更好的去噪效果;其次,有效的避免隐层节点输出矩阵求解不准的问胚,进一步增强极端学习机的泛化性能;通过应用在普遍图像数据库上的实验结果表明,这种提出的算法与其他算法相比具有更强的鲁棒性和较高的识别率.
推荐文章
基于微分同胚的鲁棒激活函数的极端学习机
极端学习机
角度优化
微分同胚
鲁棒激活函数
一种改进的极端学习机算法
单隐层前向神经网络
极端学习机
L1/2正则化
一种鲁棒非平衡极速学习机算法
极速学习机
不平衡数据集
基于核的可能性模糊C-均值聚类
神经网络
一种基于鲁棒估计的极限学习机方法
极限学习机
稳健估计
鲁棒极限学习机
M估计
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于角度优化的鲁棒极端学习机算法
来源期刊 计算机测量与控制 学科
关键词 极端学习机 鲁棒激活函数 角度优化
年,卷(期) 2017,(1) 所属期刊栏目 设计与应用
研究方向 页码范围 198-203
页数 6页 分类号 TP18
字数 语种 中文
DOI 10.16526/j.cnki.11-4762/tp.2017.01.056
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 闫德勤 辽宁师范大学计算机与信息技术学院 124 1071 15.0 28.0
2 刘德山 辽宁师范大学计算机与信息技术学院 57 349 9.0 17.0
3 楚永贺 辽宁师范大学计算机与信息技术学院 10 26 3.0 5.0
4 魏迪 辽宁师范大学计算机与信息技术学院 3 11 1.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (31)
共引文献  (14)
参考文献  (14)
节点文献
引证文献  (1)
同被引文献  (10)
二级引证文献  (0)
1936(1)
  • 参考文献(0)
  • 二级参考文献(1)
1948(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(7)
  • 参考文献(2)
  • 二级参考文献(5)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(7)
  • 参考文献(1)
  • 二级参考文献(6)
2012(3)
  • 参考文献(2)
  • 二级参考文献(1)
2013(4)
  • 参考文献(3)
  • 二级参考文献(1)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
极端学习机
鲁棒激活函数
角度优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导