基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在经典的BP神经网络框架支撑下,利用加权变异粒子群算法使神经网络的训练更加科学,同时也更好地发挥了粒子群算法的优点,使其分类效果更加精准。实验后的分类结果表明,与改进之前的BP神经网络相比,总体精度和Kappa系数分别提高了0.1083和0.1383;与支持向量机、最大似然及最小距离等分类方法进行了对比,分类效果均优于以上方法。加权变异粒子群BP神经网络不仅可以实现遥感影像的高精度分类,对解决“同谱异物”和“异物同谱”现象也具有一定的作用。
推荐文章
基于粒子群优化BP神经网络的心电信号分类方法
心电信号
粒子群算法
BP神经网络
分类
模式识别
QRS波群
基于自适应周期变异粒子群优化BP神经网络的旋转机械故障诊断
粒子群优化
自适应周期变异
BP神经网络
故障诊断
基于粒子群优化BP神经网络的脉象识别方法
脉象识别
粒子群算法
输出误差
误差反向传播算法
神经网络
泛化能力
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 加权变异粒子群BP神经网络在遥感影像分类中的应用
来源期刊 地理空间信息 学科 地球科学
关键词 粒子群算法 混合神经网络 加权 变异 分类
年,卷(期) 2016,(12) 所属期刊栏目 3S 技术应用
研究方向 页码范围 37-40
页数 4页 分类号 P237
字数 3826字 语种 中文
DOI 10.3969/j.issn.1672-4623.2016.12.013
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王力 中国科学院遥感与数字地球研究所遥感科学国家重点实验室 113 1744 20.0 38.0
2 吴良才 东华理工大学测绘工程学院 42 296 9.0 15.0
3 黄妮 中国科学院遥感与数字地球研究所遥感科学国家重点实验室 20 271 9.0 16.0
4 胡永森 东华理工大学测绘工程学院 2 6 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (80)
共引文献  (211)
参考文献  (15)
节点文献
引证文献  (4)
同被引文献  (9)
二级引证文献  (13)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(1)
  • 二级参考文献(0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(5)
  • 参考文献(0)
  • 二级参考文献(5)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(5)
  • 参考文献(0)
  • 二级参考文献(5)
2002(8)
  • 参考文献(0)
  • 二级参考文献(8)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(8)
  • 参考文献(1)
  • 二级参考文献(7)
2005(9)
  • 参考文献(1)
  • 二级参考文献(8)
2006(6)
  • 参考文献(3)
  • 二级参考文献(3)
2007(3)
  • 参考文献(2)
  • 二级参考文献(1)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(5)
  • 参考文献(2)
  • 二级参考文献(3)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(7)
  • 参考文献(3)
  • 二级参考文献(4)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(3)
  • 引证文献(2)
  • 二级引证文献(1)
2019(9)
  • 引证文献(2)
  • 二级引证文献(7)
2020(5)
  • 引证文献(0)
  • 二级引证文献(5)
研究主题发展历程
节点文献
粒子群算法
混合神经网络
加权
变异
分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
地理空间信息
月刊
1672-4623
42-1692/P
大16开
湖北省武汉市武昌中南一路50号湖北省测绘局地理信息局航测楼二楼
2003
chi
出版文献量(篇)
5778
总下载数(次)
16
论文1v1指导