基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高变压器故障诊断的正确率,提出一种基于改进重排序自适应有向无环图(reordering adaptive directed acyclic graph,RADAG)支持向量机(support vector machines,SVM)的电力变压器故障诊断方法.该方法首先利用基于K折交叉验证和人工蜂群算法优化SVM的核函数和惩罚因子参数,使二分类SVM获得最佳的分类性能;其次,为进一步提高多分类SVM的性能,提出利用交叉确认机制估计每个二分类 SVM的泛化能力的方法,并将其用于改进 RADAG-SVM的分类精度.最后,给出基于改进RADAG-SVM的变压器故障诊断流程并进行实例分析.结果表明,所提方法、原始RADAG-SVM和基于结点优化的DDAG-SVM方法对变压器故障诊断的平均正确率分别为94.16%,87.85%和90.77%.因而,与其他2种诊断方法相比,所提方法具有较好的故障诊断效果.
推荐文章
基于RS优化的电力变压器故障诊断方法
电力变压器
故障诊断
粗糙集
概率神经网络
基于组合模型的电力变压器故障诊断
变压器故障
熵权
灰关联熵
小波神经网络
模糊粗糙集
支持向量机
三比值法
基于改进灰关联分析的变压器故障诊断
变压器
油中溶解气
故障诊断
灰色关联分析
基于模糊模块化网络的电力变压器故障诊断
电力变压器
网络
故障
诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进RADAG-S VM的电力变压器故障诊断
来源期刊 东南大学学报(自然科学版) 学科 工学
关键词 电力变压器 故障诊断 重排序自适应有向无环图 支持向量机
年,卷(期) 2016,(5) 所属期刊栏目
研究方向 页码范围 964-971
页数 8页 分类号 TM71
字数 7954字 语种 中文
DOI 10.3969/j.issn.1001-0505.2016.05.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周志成 江苏省电力公司电力科学研究院 50 470 12.0 19.0
2 杨成顺 南京工程学院电力工程学院 26 195 8.0 13.0
3 陶风波 江苏省电力公司电力科学研究院 21 121 6.0 10.0
4 杨志超 南京工程学院电力工程学院 66 667 11.0 24.0
5 李建生 江苏省电力公司电力科学研究院 2 8 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (74)
共引文献  (147)
参考文献  (15)
节点文献
引证文献  (4)
同被引文献  (21)
二级引证文献  (11)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(2)
  • 二级参考文献(1)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(5)
  • 参考文献(0)
  • 二级参考文献(5)
2002(8)
  • 参考文献(0)
  • 二级参考文献(8)
2003(6)
  • 参考文献(1)
  • 二级参考文献(5)
2004(11)
  • 参考文献(0)
  • 二级参考文献(11)
2005(10)
  • 参考文献(1)
  • 二级参考文献(9)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(5)
  • 参考文献(2)
  • 二级参考文献(3)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(6)
  • 参考文献(2)
  • 二级参考文献(4)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(8)
  • 引证文献(1)
  • 二级引证文献(7)
2020(4)
  • 引证文献(0)
  • 二级引证文献(4)
研究主题发展历程
节点文献
电力变压器
故障诊断
重排序自适应有向无环图
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
东南大学学报(自然科学版)
双月刊
1001-0505
32-1178/N
大16开
南京四牌楼2号
28-15
1955
chi
出版文献量(篇)
5216
总下载数(次)
12
总被引数(次)
71314
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导