作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
近年来,深度学习模型在各种计算机视觉方面都展现出了远远优于传统方法的性能,在自然场景中的文字区域定位问题中引入深度学习方法无疑也是大势所趋。文章提出了一种基于深度全卷积网络方法的文字区域定位方法,实现了端到端的训练、检测,使得训练更为有效,检测过程更加高效。最终文中方法在ICDAR 2015数据集上对比基于MSER等的传统方法有了很大提升,达到了86.57%的查准率和82.1%的召回率。
推荐文章
基于深度时空卷积神经网络的人群异常行为检测和定位
人群异常行为检测
深度时空卷积神经网络
迁移学习
数据扩充
基于深度卷积神经网络的车标分类
深度学习
神经网络
车标分类
图像识别
基于并行卷积神经网络的人脸关键点定位方法研究
人脸特征点定位
卷积神经网络
图像卷积
下图像采样
基于深度卷积神经网络的图像检索算法研究
图像检索
卷积神经网络
特征提取
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度全卷积神经网络的文字区域定位方法
来源期刊 无线互联科技 学科
关键词 深度全卷积网络 自然场景文字区域定位 图像区域分割
年,卷(期) 2016,(23) 所属期刊栏目 网络地带
研究方向 页码范围 43-44
页数 2页 分类号
字数 1643字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 骆遥 同济大学测绘与地理信息学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (1)
节点文献
引证文献  (3)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度全卷积网络
自然场景文字区域定位
图像区域分割
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
无线互联科技
半月刊
1672-6944
32-1675/TN
16开
江苏省南京市
2004
chi
出版文献量(篇)
18145
总下载数(次)
78
论文1v1指导