基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在基于加速度信号的人体行为识别中,LDA是较常用的特征降维方法之一,然而LDA并不直接以训练误差作为目标函数,无法保证获得训练误差最小的投影空间。针对这一情况,采用基于GA优化的LDA进行特征选择。提取加速度信号特征,利用PCA方法解决“小样本问题”,通过GA调整LDA中类间离散度矩阵的特征值矢量,使获得的投影空间训练误差最小。采用SVM对7种日常行为进行分类。实验结果表明,与单独采用PCA和采用PCA+LDA方法相比,基于GA优化的LDA算法在保证较高识别率的同时能有效降低特征维数并减小分类误差,最终测试样本的识别率可达95.96%。
推荐文章
基于加速度轨迹图像的手势特征提取与识别
手势识别
加速度传感器
非负矩阵分解
隐马尔可夫模型
人机交互
基于加速度传感器和神经网络的人体活动行为识别
人体活动
行为识别
特征提取
加速度传感器
BP神经网络
实验仿真
基于加速度传感器的在途危险品行为姿态检测方法
行为识别
加速度传感器
时间窗口
特征向量
分类器
一种基于加速度传感器的人体跌倒识别方法
跌倒识别
三轴加速度传感器
隐马尔科夫模型
身体倾角
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 行为识别中基于GA优化的加速度特征选择方法
来源期刊 计算机工程与应用 学科 工学
关键词 行为识别 加速度传感器 主成分分析(PCA) 线性判别分析(LDA) 遗传算法(GA) 支持向量机(SVM)
年,卷(期) 2016,(6) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 139-143,166
页数 6页 分类号 TP212.9
字数 5106字 语种 中文
DOI 10.3778/j.issn.1002-8331.1404-0415
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 卢先领 江南大学轻工过程先进控制教育部重点实验室 29 232 8.0 14.0
5 王洪斌 江南大学轻工过程先进控制教育部重点实验室 6 105 5.0 6.0
9 徐仙 江南大学轻工过程先进控制教育部重点实验室 4 39 4.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (15)
共引文献  (10)
参考文献  (9)
节点文献
引证文献  (8)
同被引文献  (14)
二级引证文献  (8)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(5)
  • 参考文献(2)
  • 二级参考文献(3)
2011(5)
  • 参考文献(3)
  • 二级参考文献(2)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(3)
  • 引证文献(3)
  • 二级引证文献(0)
2019(5)
  • 引证文献(2)
  • 二级引证文献(3)
2020(5)
  • 引证文献(0)
  • 二级引证文献(5)
研究主题发展历程
节点文献
行为识别
加速度传感器
主成分分析(PCA)
线性判别分析(LDA)
遗传算法(GA)
支持向量机(SVM)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导