基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了解决传统车辆检索方法中准确性和区分度较低的问题,本文提出了一种基于卷积神经网络(CNN)的车辆检索方法。该方法利用CNN稀疏连接和权值共享的优点,针对车辆前脸图像关键特征位置的相对不变性,设计了一个七层的网络结构,可以合理提取车辆的有效特征,并将低级结构特征组合成为高一级的特征,既简化了模型的复杂度,也克服了旋转平移等因素对检测结果的影响。该方法最终通过相似度排序的方法得到检索结果。实验结果表明,本文所提出的方法相对于基于局部不变特征方法具有更高的准确度。
推荐文章
基于深度卷积神经网络的图像检索算法研究
图像检索
卷积神经网络
特征提取
深度学习
基于卷积神经网络的灯具商品图像检索
卷积神经网络
商品图片搜索
YOLO算法
多标签分类任务
结合卷积神经网络与哈希编码的图像检索方法
图像检索
卷积神经网络
哈希编码
网络模型
图片对生成
网络训练
一种基于深度卷积神经网络的车辆颜色识别方法
深度学习
卷积神经网络
颜色识别
智能交通
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的车辆检索方法研究
来源期刊 电脑知识与技术:学术交流 学科 工学
关键词 车辆检测 图像检索 卷积神经网络
年,卷(期) 2016,(10X) 所属期刊栏目
研究方向 页码范围 191-193
页数 3页 分类号 TP391.41
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 丁学文 天津职业技术师范大学电子工程学院 15 26 3.0 4.0
2 甘澄 天津职业技术师范大学电子工程学院 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
车辆检测
图像检索
卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导