作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
深度学习在人工智能尤其是在图像处理,图像分类方面的应用越来越广泛。其中卷积神经网络在其中具有重要地位。本文的主要目的为探究通过调整在网络中卷积过程所使用的滤波器大小,在保证分类结果准确率可接受情况下,尽量减少样本的训练时间,并总结出一套较为通用的滤波器大小设置规则。在文章中,通过对theano中基于lenet模型所构造的卷积神经网络的两层卷积层中的滤波器大小进行不同搭配的设置,测试数据集为广泛使用的mnist手写数字库以及cifar10库,最后对比探究出适用于这两个数据集的减少训练时间的设置规律。
推荐文章
基于卷积神经网络的小样本树皮图像识别方法
树皮图像
卷积神经网络
Inception_v3
小样本
基于卷积神经网络的辐射图像降噪方法研究
辐射图像
图像降噪
卷积神经网络
基于卷积神经网络的玉米病害小样本识别研究
玉米病害
迁移学习
小样本
卷积神经网络
Focal Loss
混淆矩阵
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 卷积神经网络中减少训练样本时间方法研究
来源期刊 电脑知识与技术:学术交流 学科 工学
关键词 卷积神经网络 深度学习 图像处理 训练时间
年,卷(期) 2016,(11X) 所属期刊栏目
研究方向 页码范围 167-170
页数 4页 分类号 TP391.41
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 范青 4 13 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
深度学习
图像处理
训练时间
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导