基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Calculating analytical approximate solutions for non-linear infectious disease models is a difficult task. Such models often require computational tools to analyse analytical approximate methods which appear in some theoretical and practical applications in systems biology. They represent key critical elements and give some approximate solutions for such systems. The SIR epidemic disease model is given as the non-linear system of ODE’s. Then, we use a proper scaling to reduce the number of parameters. We suggest Elzaki transform method to find analytical approximate solutions for the simplified model. The technique plays an important role in calculating the analytical approximate solutions. The local and global dynamics of the model are also studied. An investigation of the behaviour at infinity was conducted via finding the lines and singular points at infinity. Model dynamic results are computed in numerical simulations using Pplane8 and SimBiology Toolbox for Mathlab. Results provide a good step forward for describing the model dynamics. More interestingly, the simplified model could be accurate, robust, and used by biologists for different purposes such as identifying critical model elements.
推荐文章
Zircon saturation model in silicate melts: a review and update
Zircon
Zircon saturation
Model
Silicate melt
Mafic to silicic melts
Peraluminous to peralkaline compositions
Igneous rocks
Thermometer
Lyocell与Model织物风格比较
再生纤维素纤维
Lyocell织物
Model织物
风格特征
Role of hydro-geochemical functions on karst critical zone hydrology for sustainability of water res
Hydro-geochemical analysis
Karst critical zone
Water resources
Vegetation Southwest China
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Identifying Critical Parameters in SIR Model for Spread of Disease
来源期刊 建模与仿真(英文) 学科 数学
关键词 Mathematical Modelling EPIDEMIC SIR DISEASE Model Stability ANALYSIS Analytical APPROXIMATE Solutions Sensitivity ANALYSIS
年,卷(期) 2017,(1) 所属期刊栏目
研究方向 页码范围 32-46
页数 15页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Mathematical
Modelling
EPIDEMIC
SIR
DISEASE
Model
Stability
ANALYSIS
Analytical
APPROXIMATE
Solutions
Sensitivity
ANALYSIS
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
建模与仿真(英文)
季刊
2327-4018
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
90
总下载数(次)
0
总被引数(次)
0
论文1v1指导