基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
FP-growth algorithm is an algorithm for mining association rules without generating candidate sets.It has high practical value in many fields.However,it is a memory resident algorithm,and can only handle small data sets.It seems powerless when dealing with massive data sets.This paper improves the FP-growth algorithm.The core idea of the improved algorithm is to partition massive data set into small data sets,which would be dealt with separately.Firstly,systematic sampling methods are used to extract representative samples from large data sets,and these samples are used to make SOM(Self-organizing Map)cluster analysis.Then,the large data set is partitioned into several subsets according to the cluster results.Lastly,FP-growth algorithm is executed in each subset,and association rules are mined.The experimental result shows that the improved algorithm reduces the memory consumption,and shortens the time of data mining.The processing capacity and efficiency of massive data is enhanced by the improved algorithm.
推荐文章
基于Hadoop的FP-Growth关联规则并行改进算法
FP-Growth算法
Hadoop
数据分割
负载均衡
一种基于邻接表的改进FP-growth算法
数据挖掘
关联规则
邻接表
基于FP-growth算法的关联规则获取研究
关联规则
FP-growth算法
税负分析
基于改进FP-growth的用户兴趣推荐算法的设计与实现
推荐系统
FP-growth
关联规则挖掘
冷启动
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 An Improved FP-Growth Algorithm Based on SOM Partition
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 FP-GROWTH SOM Data MINING CLUSTER PARTITION
年,卷(期) 2017,(1) 所属期刊栏目
研究方向 页码范围 42-44
页数 3页 分类号 C5
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
FP-GROWTH
SOM
Data
MINING
CLUSTER
PARTITION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导