基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
以真实场景中拍摄的交通标志图像数据集GTSRB为研究对象,将卷积神经网络与支持向量机相结合,提出一种基于二级改进LeNet-5的交通标志识别算法.该算法首先根据识别系统的实时性要求,对原始LeNet-5结构进行改进;然后用裁剪、灰度化、图像增强和尺寸归一化等操作对原始图像进行预处理,得到32×32的感兴趣区域;接下来,利用数据集GTSRB训练出一个二级改进LeNet-5,其中第一级改进LeNet-5将感兴趣区域中包含的交通标志粗分为6类,第二级改进LeNet-5对粗分类结果进行细分类,识别出交通标志所属的最终类别.实验结果表明,基于二级改进LeNet-5交通标志识别算法因网络模型能够提取交通标志的多尺度特征,识别正确率可达91.76%.
推荐文章
基于改进LeNet-5的交通标志识别算法研究
交通标志识别
卷积神经网络
LeNet网络模型
基于深度学习的交通标志识别算法研究
交通标志识别
深度学习
卷积神经网络
TSR_Lenet
算法融合
实验对比
基于改进的卷积神经网络LeNet-5的车型识别方法
深度学习
卷积神经网络
LeNet-5
车型识别
基于卷积神经网络的实景交通标志识别
卷积神经网络
深度学习
交通标志识别
训练
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于二级改进LeNet-5的交通标志识别算法
来源期刊 陕西师范大学学报(自然科学版) 学科 工学
关键词 卷积神经网络 交通标志 分类识别 支持向量机
年,卷(期) 2017,(2) 所属期刊栏目 数学与计算机科学
研究方向 页码范围 24-28
页数 5页 分类号 TP39
字数 3619字 语种 中文
DOI 10.15983/j.cnki.jsnu.2017.02.125
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 马苗 87 626 14.0 20.0
10 党倩 陕西师范大学计算机科学学院 5 19 2.0 4.0
11 陈昱莅 3 26 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (41)
共引文献  (163)
参考文献  (11)
节点文献
引证文献  (11)
同被引文献  (40)
二级引证文献  (16)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(7)
  • 参考文献(3)
  • 二级参考文献(4)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(6)
  • 引证文献(4)
  • 二级引证文献(2)
2019(15)
  • 引证文献(6)
  • 二级引证文献(9)
2020(6)
  • 引证文献(1)
  • 二级引证文献(5)
研究主题发展历程
节点文献
卷积神经网络
交通标志
分类识别
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
陕西师范大学学报(自然科学版)
双月刊
1672-4291
61-1071/N
大16开
陕西省西安市长安南路
52-109
1960
chi
出版文献量(篇)
3025
总下载数(次)
7
总被引数(次)
18459
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导