基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于模式的贝叶斯分类模型是解决数据挖掘领域分类问题的一种有效方法.然而,大多数基于模式的贝叶斯分类器只考虑模式在目标类数据集中的支持度,而忽略了模式在对立类数据集合中的支持度.此外,对于高速动态变化的无限数据流环境,在静态数据集下的基于模式的贝叶斯分类器就不能适用.为了解决这些问题,提出了基于显露模式的数据流贝叶斯分类模型EPDS(Bayesian classifier algorithm based on emerging pattern for data stream).该模型使用一个简单的混合森林结构来维护内存中事务的项集,并采用一种快速的模式抽取机制来提高算法速度.EPDS采用半懒惰式学习策略持续更新显露模式,并为待分类事务在每个类下建立局部分类模型.大量实验结果表明,该算法比其他数据流分类模型有较高的准确度.
推荐文章
结合自助抽样的动态数据流贝叶斯分类算法
数据流
自助抽样
贝叶斯分类
滑动窗口
增量存储树
基于引力模型的朴素贝叶斯分类算法
分类算法
朴素贝叶斯
引力模型
遥感图像
基于改进特征加权的朴素贝叶斯分类算法
文本分类
朴素贝叶斯
JS散度
词频
文本频率
类别频率
一种新型加权朴素贝叶斯分类算法
数据挖掘
朴素贝叶斯
属性频率
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于显露模式的数据流贝叶斯分类算法
来源期刊 软件学报 学科 工学
关键词 数据流 显露模式 贝叶斯 数据挖掘
年,卷(期) 2017,(11) 所属期刊栏目 复杂环境下的机器学习研究专刊
研究方向 页码范围 2891-2904
页数 14页 分类号 TP181
字数 12742字 语种 中文
DOI 10.13328/j.cnki.jos.005350
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王志海 北京交通大学计算机与信息技术学院 64 491 11.0 20.0
2 孙艳歌 北京交通大学计算机与信息技术学院 14 76 6.0 8.0
3 杜超 北京交通大学计算机与信息技术学院 1 8 1.0 1.0
4 江晶晶 北京交通大学计算机与信息技术学院 2 8 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (11)
共引文献  (43)
参考文献  (13)
节点文献
引证文献  (8)
同被引文献  (5)
二级引证文献  (9)
1986(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(4)
  • 引证文献(4)
  • 二级引证文献(0)
2019(10)
  • 引证文献(4)
  • 二级引证文献(6)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
数据流
显露模式
贝叶斯
数据挖掘
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件学报
月刊
1000-9825
11-2560/TP
16开
北京8718信箱
82-367
1990
chi
出版文献量(篇)
5820
总下载数(次)
36
论文1v1指导