基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为实现弹药传输机械臂中不可测参数的辨识,建立了机械臂的虚拟样机,并将其作为样本数据的来源;考虑到样本数据的连续性和平滑特性,使用函数型数据分析和函数型主成分分析对样本数据进行了特征提取,并利用提取的特征参数和待辨识参数作为训练样本对极限学习机(ELM)进行了训练.为提高极限学习机的辨识精度和泛化能力,利用粒子群算法对极限学习机的输入层与隐含层的连接权值和隐含层节点的阈值进行了优化.最后,分别利用仿真数据与测试数据对此方法进行了验证,仿真数据的辨识结果表明,优化后的极限学习机具有更高的辨识精度和泛化能力;同时,通过对比将测试数据的辨识结果代入模型中进行仿真得到的支臂角速度与测试角速度,验证了此方法的可行性和有效性.
推荐文章
基于粒子群优化算法的最优极限学习机
粒子群算法
极限学习机
隐层节点
优化极限学习机的序列最小优化方法
极限学习机
支持向量机
序列最小优化
改进粒子群优化的极限学习机软测量建模方法
软测量建模
极限学习机
粒子群优化算法
自适应权重
小波核极限学习机分类器
极限学习机
核学习机
小波分析
小波核函数
分类器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 函数型数据分析与优化极限学习机结合的弹药传输机械臂参数辨识
来源期刊 工程科学学报 学科 工学
关键词 参数辨识 函数型数据分析 极限学习机 粒子群优化 弹药传输机械臂
年,卷(期) 2017,(4) 所属期刊栏目
研究方向 页码范围 611-618
页数 8页 分类号 TP241|TH113
字数 6805字 语种 中文
DOI 10.13374/j.issn2095-9389.2017.04.017
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 侯保林 南京理工大学机械工程学院 53 415 12.0 17.0
2 赵抢抢 南京理工大学机械工程学院 4 13 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (32)
共引文献  (30)
参考文献  (13)
节点文献
引证文献  (3)
同被引文献  (4)
二级引证文献  (0)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(1)
  • 二级参考文献(0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(5)
  • 参考文献(2)
  • 二级参考文献(3)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(4)
  • 参考文献(4)
  • 二级参考文献(0)
2015(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
参数辨识
函数型数据分析
极限学习机
粒子群优化
弹药传输机械臂
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
工程科学学报
月刊
2095-9389
10-1297/TF
大16开
北京海淀区学院路30号
1955
chi
出版文献量(篇)
4988
总下载数(次)
18
总被引数(次)
47371
论文1v1指导