基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统协同过滤推荐算法通常针对整个评分矩阵进行计算,存在效率不高的问题,提出一种基于K-medoids项目聚类的协同过滤推荐算法.该算法根据项目的类别属性对项目进行聚类,构建用户的偏好领域,使用用户偏好领域内的评分矩阵进行用户间相似度的计算,得到目标用户的最近邻居集,并生成推荐结果.与常用的K-means聚类方法相比,采用K-medoids方法对项目类别属性进行聚类,不仅克服了评分聚类可靠性不高的问题,而且算法还具有更好的鲁棒性.实验结果表明,该算法能有效提高推荐质量.
推荐文章
基于NKL和K-means聚类的协同过滤推荐算法
协同过滤
推荐算法
矩阵稀疏
K-means
相似性度量
一种基于差分演化的K-medoids聚类算法
差分演化
聚类质量
K-medoids算法
全局优化
一种高效的K-medoids聚类算法
聚类
K-medoids算法
中心微调
增量候选
一种基于CF树的k-medoids聚类算法
聚类
k-中心点
CF树
微簇
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于K-medoids项目聚类的协同过滤推荐算法
来源期刊 重庆邮电大学学报(自然科学版) 学科 工学
关键词 协同过滤 K-medoids聚类 用户偏好 推荐算法
年,卷(期) 2017,(4) 所属期刊栏目 计算机与自动化
研究方向 页码范围 521-526
页数 6页 分类号 TP391
字数 4416字 语种 中文
DOI 10.3979/j.issn.1673-825X.2017.04.015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张璞 重庆邮电大学计算机学院 23 124 7.0 10.0
2 王永 重庆邮电大学经济管理学院 72 411 12.0 16.0
3 万潇逸 重庆邮电大学经济管理学院 1 14 1.0 1.0
4 陶娅芝 重庆邮电大学经济管理学院 3 21 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (133)
共引文献  (726)
参考文献  (9)
节点文献
引证文献  (14)
同被引文献  (45)
二级引证文献  (30)
1938(1)
  • 参考文献(0)
  • 二级参考文献(1)
1963(1)
  • 参考文献(0)
  • 二级参考文献(1)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(2)
  • 参考文献(0)
  • 二级参考文献(2)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(3)
  • 参考文献(0)
  • 二级参考文献(3)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(11)
  • 参考文献(0)
  • 二级参考文献(11)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(16)
  • 参考文献(1)
  • 二级参考文献(15)
2005(7)
  • 参考文献(0)
  • 二级参考文献(7)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(10)
  • 参考文献(0)
  • 二级参考文献(10)
2008(9)
  • 参考文献(0)
  • 二级参考文献(9)
2009(19)
  • 参考文献(2)
  • 二级参考文献(17)
2010(17)
  • 参考文献(0)
  • 二级参考文献(17)
2011(6)
  • 参考文献(1)
  • 二级参考文献(5)
2012(8)
  • 参考文献(1)
  • 二级参考文献(7)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(9)
  • 引证文献(9)
  • 二级引证文献(0)
2019(21)
  • 引证文献(4)
  • 二级引证文献(17)
2020(14)
  • 引证文献(1)
  • 二级引证文献(13)
研究主题发展历程
节点文献
协同过滤
K-medoids聚类
用户偏好
推荐算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
重庆邮电大学学报(自然科学版)
双月刊
1673-825X
50-1181/N
大16开
重庆南岸区
78-77
1988
chi
出版文献量(篇)
3229
总下载数(次)
12
总被引数(次)
19476
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导