基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
To detect effectively unknown anomalous attack behaviors of network traffic,an Unsupervised Anomaly Detection approach for network flow using Immune Network based K-means clustering(UADINK)is proposed.In UADINK,artificial immune network based K-means clustering algorithm(aiNet_KMC)is introduced to cluster network flow,i.e.extracting abstract internal images from network flows and obtaining an optimizing parameter K of K-means by aiNet model,and network flows are clustered by K-means algorithm.The cluster labeling algorithm(clusLA)and the network flow anomaly detection algorithm(NFAD)are introduced to detect anomalous attack behaviors of network flows,where the clusLA algorithm is used for labeling whether each cluster belongs to malicious,and the labeled clusters are regarded as detectors to identify anomaly network flows by NFAD.To evaluate the effectiveness of UADINK,the ISCX 2012 IDS dataset is considered as the simulating experimental dataset.Compared with the NDM based K-means anomaly detection approach,the results show that UADINK is a radical anomaly detection approach in order to detect anomalies of network flows.
推荐文章
Application of K-means and PCA approaches to estimation of gold grade in Khooni district (central Ir
K-means method
Clustering
Principal
component analysis (PCA)
Estimation
Gold
Khooni district
k-means算法的研究与改进
聚类
划分方法
数据样本
阈值
基于Spark的并行K-means算法研究
Spark
K-means
PSO
迭代计算
基于变异的k-means聚类算法
聚类
mk-means算法
变异
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Unsupervised Anomaly Detection for Network Flow Using Immune Network Based K-means Clustering
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 UNSUPERVISED ANOMALY detection Artificial IMMUNE NETWORK K-MEANS CLUSTERING NETWORK flow
年,卷(期) 2017,(1) 所属期刊栏目
研究方向 页码范围 96-98
页数 3页 分类号 C5
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
UNSUPERVISED
ANOMALY
detection
Artificial
IMMUNE
NETWORK
K-MEANS
CLUSTERING
NETWORK
flow
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导