基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种基于极大似然的噪声对数功率谱估计方法,采用高斯混合模型对每一个频带上的功率谱包络构建统计模型,将时序包络划分为语音和非语音类,它们分别对应于高斯混合模型的两个高斯分量,描述语音和非语音的统计分布,其中非语音高斯分量的均值即为噪声功率谱的最优估计.采用序贯学习的方法,在极大似然准则下逐帧更新模型参数,并逐帧给出噪声功率谱的最优估计值.此外,由于序贯更新过程中语音信号长时缺失,容易导致模型失稳,提出了一种在线的最小描述长度准则(MDL)来判断语音信号是否长时缺失,从而保证了模型的稳定性.实验表明,算法性能整体优于经典的MS和IMCRA算法.
推荐文章
失真控制下的短时谱估计语音增强算法
语音增强
噪声抑制
语音清晰度
失真控制
基于隐马尔可夫模型的非监督噪声功率谱估计
语音增强
噪声功率谱估计
隐马尔可夫模型
极大似然准则
模型约束
基于多窗谱估计和几何谱减的低信噪比语音增强方法
语音增强
多窗谱
改进的最小控制递归平均
几何谱减
基于加权噪声的递归平滑噪声功率谱估计
语音增强
先验信噪比估计
噪声功率谱估计
递归平滑
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 面向语音增强的约束序贯高斯混合模型噪声功率谱估计
来源期刊 声学学报 学科
关键词
年,卷(期) 2017,(5) 所属期刊栏目
研究方向 页码范围 633-640
页数 8页 分类号
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (72)
共引文献  (31)
参考文献  (22)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1953(2)
  • 参考文献(0)
  • 二级参考文献(2)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(2)
  • 参考文献(0)
  • 二级参考文献(2)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(2)
  • 参考文献(0)
  • 二级参考文献(2)
1985(3)
  • 参考文献(1)
  • 二级参考文献(2)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(5)
  • 参考文献(0)
  • 二级参考文献(5)
2001(4)
  • 参考文献(1)
  • 二级参考文献(3)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(7)
  • 参考文献(1)
  • 二级参考文献(6)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(6)
  • 参考文献(2)
  • 二级参考文献(4)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(8)
  • 参考文献(1)
  • 二级参考文献(7)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(7)
  • 参考文献(1)
  • 二级参考文献(6)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(4)
  • 参考文献(2)
  • 二级参考文献(2)
2013(7)
  • 参考文献(5)
  • 二级参考文献(2)
2014(4)
  • 参考文献(4)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
声学学报
双月刊
0371-0025
11-2065/O4
大16开
北京市北四环西路21号
2-181
1964
chi
出版文献量(篇)
2139
总下载数(次)
5
总被引数(次)
26571
论文1v1指导