基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
低资源语音识别是当今语音界研究的热点问题之一,也是多语言小语种语音识别技术在实际应用中所面临的重要挑战之一.本文回顾并总结了低资源语音识别的发展历史和研究现状,重点介绍了低资源语音识别在声学特征、声学模型和语言模型方面的若干关键技术研究进展.具体内容包括发音特征、多语言瓶颈特征、子空间高斯混合模型、卷积神经网络声学模型和递归神经网络语言模型,然后介绍了针对低资源语音识别的公开关键词搜索(Open keyword search,OpenKWS)评测,最后对低资源语音识别进行了总结和展望.
推荐文章
音频取证若干关键技术研究进展
音频取证
取证水印
音频篡改检测
录音设备识别
录音场合识别
语音情感识别的关键技术
语音情感识别
语音自然度
声学特征
认知机理
模糊认知图
事件相关电位
非特定人语音识别关键技术研究
嵌入式
语音识别
非特定人
隐马尔科夫模型
LD3320
LP2303
中石化地下储气库建库关键技术研究进展
地下储气库
动态密封性评价
建库方案
气藏型储气库
含水层储气库
厚夹层盐穴储气库
完整性评价
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 低资源语音识别若干关键技术研究进展
来源期刊 数据采集与处理 学科 工学
关键词 语音识别 低资源 声学模型 语言模型
年,卷(期) 2017,(2) 所属期刊栏目
研究方向 页码范围 205-220
页数 16页 分类号 TP319
字数 11625字 语种 中文
DOI 10.16337/j.1004-9037.2017.02.001
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘加 清华大学电子工程系 79 938 18.0 28.0
2 张卫强 清华大学电子工程系 17 115 7.0 10.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (12)
参考文献  (18)
节点文献
引证文献  (11)
同被引文献  (41)
二级引证文献  (19)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(1)
  • 二级参考文献(0)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(4)
  • 参考文献(3)
  • 二级参考文献(1)
2014(4)
  • 参考文献(3)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(4)
  • 参考文献(4)
  • 二级参考文献(0)
2017(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(11)
  • 引证文献(8)
  • 二级引证文献(3)
2019(14)
  • 引证文献(2)
  • 二级引证文献(12)
2020(4)
  • 引证文献(0)
  • 二级引证文献(4)
研究主题发展历程
节点文献
语音识别
低资源
声学模型
语言模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据采集与处理
双月刊
1004-9037
32-1367/TN
大16开
南京市御道街29号1016信箱
28-235
1986
chi
出版文献量(篇)
3235
总下载数(次)
7
总被引数(次)
25271
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导