基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
数据聚类是将数据对象划分到不同的类或簇中,是数据挖掘中的一项重要技术.教育领域拥有海量的学生信息数据,把数据挖掘中的聚类技术引入其中,具有很强的实际价值.阐述了运用数据挖掘中改进的引入权重的聚类技术对成绩数据进行选择、预处理和挖掘分析等,展示了3个Matlab实验使成绩数据如何通过K-means算法进行聚类分析,并对3种运行结果的意义各自进行了显示与分析,同时指出了运行结果的不足及意义.针对学生实验中的分类原因进行了研究并在学生成绩分析中发现很多隐含着的不易发现的有价值信息,利用这些聚类结果提出了相应的教学措施及建议,从而有针对性地提高教学质量.
推荐文章
k-means算法的研究与改进
聚类
划分方法
数据样本
阈值
基于属性权重最优化的 k-means 聚类算法
聚类算法
属性权重
数据挖掘
目标函数
基于改进磷虾群算法的K-means算法
磷虾群算法
聚类算法
精英引领
最佳聚类数
动态分群
基于MapReduce框架下K-means的改进算法
MapReduce框架
K-means算法
数据挖掘
聚类分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于权重的改进K-means算法应用研究
来源期刊 高师理科学刊 学科 工学
关键词 K-means算法 聚类分析 权重
年,卷(期) 2017,(11) 所属期刊栏目
研究方向 页码范围 24-29
页数 6页 分类号 TP312
字数 4635字 语种 中文
DOI 10.3969/j.issn.1007-9831.2017.11.007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 焦莉娟 忻州师范学院计算机科学与技术系 20 47 4.0 5.0
2 宗春梅 忻州师范学院计算机科学与技术系 18 15 3.0 3.0
3 郝耀军 忻州师范学院计算机科学与技术系 19 56 5.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (33)
共引文献  (829)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
K-means算法
聚类分析
权重
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
高师理科学刊
月刊
1007-9831
23-1418/N
大16开
齐齐哈尔市文化大街42号
1979
chi
出版文献量(篇)
5509
总下载数(次)
5
论文1v1指导