基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对当前图像语义描述生成模型对图像内目标细节部分描述不充分问题,提出了一种结合图像动态语义指导和自适应注意力机制的图像语义描述模型.该模型根据上一时刻信息预测下一时刻单词,采用自适应注意力机制选择下一时刻模型需要处理的图像区域.此外,该模型构建了图像的密集属性信息作为额外的监督信息,使得模型可以联合图像语义信息和注意力信息进行图像内容描述.在Flickr8K和Flickr30K图像集中进行了训练和测试,并且使用了不同的评估方法对所提模型进行了验证,实验结果表明所提模型性能有较大的提高,尤其与Guiding-Long Short-Term Memory模型相比,得分提高了4.1、1.8、2.4、0.8、3.1,提升幅度达到6.3%、4.0%、7.9%、3.9%、17.3%;与Soft-Attention相比,得分分别提高了1.9、2.4、3.3、1.5、2.74,提升幅度达到2.8%、5.5%、11.1%、7.5%、14.8%.
推荐文章
结合引导解码和视觉注意力的图像语义描述模型
图像描述
多示例学习
引导解码
视觉注意力机制
融入视觉常识和注意力的图像描述
图像描述
注意力机制
视觉常识
注意偏差
融合注意力机制和区域生长的裂缝识别算法研究
数字图像
裂缝识别
区域生长
注意力机制
基于通道分组注意力的无监督图像风格转换模型
无监督
通道注意力机制
图像风格转换
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合注意力和动态语义指导的图像描述模型
来源期刊 计算机科学与探索 学科 工学
关键词 图像标注生成 图像内容描述 深度神经网络 视觉注意力 语义信息
年,卷(期) 2017,(12) 所属期刊栏目 人工智能与模式识别
研究方向 页码范围 2033-2040
页数 8页 分类号 TP319
字数 5860字 语种 中文
DOI 10.3778/j.issn.1673-9418.1704047
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周治平 江南大学物联网技术应用教育部工程研究中心 105 522 11.0 16.0
2 张威 江南大学物联网技术应用教育部工程研究中心 6 8 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (8)
共引文献  (2)
参考文献  (5)
节点文献
引证文献  (1)
同被引文献  (5)
二级引证文献  (0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像标注生成
图像内容描述
深度神经网络
视觉注意力
语义信息
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学与探索
月刊
1673-9418
11-5602/TP
大16开
北京市海淀区北四环中路211号北京619信箱26分箱
82-560
2007
chi
出版文献量(篇)
2215
总下载数(次)
4
总被引数(次)
10748
论文1v1指导