基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
重点研究了极限学习机ELM对行为识别检测的效果.针对在线学习和行为分类上存在计算复杂性和时间消耗大的问题,提出了一种新的行为识别学习算法(ELM-Cholesky).该算法首先引入了基于Cholesky分解求ELM的方法,接着依据在线学习期间核函数矩阵的更新特点,将分块矩阵Chol-esky分解算法用于ELM的在线求解,使三角因子矩阵实现在线更新,从而得出一种新的ELM-Cholesky在线学习算法.新算法充分利用了历史训练数据,降低了计算的复杂性,提高了行为识别的准确率.最后,在基准数据库上采用该算法进行了大量实验,实验结果表明了这种在线学习算法的有效性.
推荐文章
基于极限学习机算法的图书馆读者借阅行为分析
极限学习机
图书馆
输入权重
高适应度值
遗传种群
借阅行为分析
基于粒子群优化算法的最优极限学习机
粒子群算法
极限学习机
隐层节点
基于极限学习机的乳房形态识别
乳房形态
乳房识别
极限学习机
文胸
密度峰值快速聚类算法
基于极限学习机的迁移学习算法
迁移学习
极限学习机
三维模型分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进极限学习机算法的行为识别
来源期刊 计算机工程与科学 学科 工学
关键词 极限学习机 在线学习 Cholesky分解 核函数
年,卷(期) 2017,(9) 所属期刊栏目 人工智能与数据挖掘
研究方向 页码范围 1749-1757
页数 9页 分类号 TP391.4
字数 7955字 语种 中文
DOI 10.3969/j.issn.1007-130X.2017.09.023
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周书仁 长沙理工大学综合交通运输大数据智能处理湖南省重点实验室 41 325 11.0 15.0
5 蔡碧野 长沙理工大学综合交通运输大数据智能处理湖南省重点实验室 18 66 6.0 7.0
9 曹思思 长沙理工大学综合交通运输大数据智能处理湖南省重点实验室 1 7 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (16)
参考文献  (11)
节点文献
引证文献  (7)
同被引文献  (61)
二级引证文献  (3)
1970(1)
  • 参考文献(1)
  • 二级参考文献(0)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(5)
  • 参考文献(1)
  • 二级参考文献(4)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(6)
  • 参考文献(1)
  • 二级参考文献(5)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(4)
  • 参考文献(2)
  • 二级参考文献(2)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(3)
  • 引证文献(2)
  • 二级引证文献(1)
2020(4)
  • 引证文献(2)
  • 二级引证文献(2)
研究主题发展历程
节点文献
极限学习机
在线学习
Cholesky分解
核函数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与科学
月刊
1007-130X
43-1258/TP
大16开
湖南省长沙市开福区德雅路109号国防科技大学计算机学院
42-153
1973
chi
出版文献量(篇)
8622
总下载数(次)
11
总被引数(次)
59030
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导