基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于计算机视觉系统分析研究缺素番茄叶片的色彩图像,可以准确提取出缺素番茄叶片色彩图像的特征。对当前缺素番茄叶片色彩图像特征提取中,可以运用计算机视觉,优化设计图像处理软件,依据番茄叶片颜色特征来完成缺素番茄叶片的识别。实验表明:基于计算机视觉系统,优化设计缺素番茄叶片色彩图像特征提取软件,可提升缺素番茄叶片色彩图像分析精度(提升32.0%),准确判断提取缺素番茄叶片图像的特征。基于计算机视觉系统,进行缺素番茄叶片的色彩图像特征提取,有效提高了缺素番茄叶片色彩图像分析精度,可在实践中推广应用该技术。
推荐文章
计算机视觉描述缺素番茄叶片颜色变化的研究
计算机应用
视觉技术
应用
缺素
颜色特征
虚拟仪器的计算机视觉系统设计研究与应用
虚拟仪器
计算机视觉技术
LabVIEW
IMAQ Vision
图像处理
鸭梨品质检测计算机视觉系统研究
机器视觉
鸭梨
果面缺陷
虚拟仪器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 计算机视觉系统下缺素番茄叶片彩色图像研究
来源期刊 农机化研究 学科 农学
关键词 计算机视觉 番茄叶片 缺素 色彩图像
年,卷(期) 2017,(7) 所属期刊栏目 新技术应用
研究方向 页码范围 175-179
页数 5页 分类号 S126|TP391.4
字数 3013字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄亚丽 河北大学电子信息工程学院 9 76 4.0 8.0
2 田秀丽 河北大学电子信息工程学院 5 20 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (62)
共引文献  (15)
参考文献  (8)
节点文献
引证文献  (3)
同被引文献  (29)
二级引证文献  (8)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(8)
  • 参考文献(0)
  • 二级参考文献(8)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(9)
  • 参考文献(0)
  • 二级参考文献(9)
2011(7)
  • 参考文献(0)
  • 二级参考文献(7)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(5)
  • 参考文献(2)
  • 二级参考文献(3)
2014(7)
  • 参考文献(4)
  • 二级参考文献(3)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(5)
  • 引证文献(1)
  • 二级引证文献(4)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
计算机视觉
番茄叶片
缺素
色彩图像
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
农机化研究
月刊
1003-188X
23-1233/S
大16开
黑龙江哈尔滨市哈平路156号
14-324
1979
chi
出版文献量(篇)
14318
总下载数(次)
39
总被引数(次)
94283
论文1v1指导