基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
以微博为代表的社交网络已经成为用户发布和获取实时信息的重要手段,然而这些实时信息中很大一部分都是垃圾或者是冗余的信息.通过有效的手段,精准地发现、组织和利用社交网络海量短文本背后隐藏的有价值的信息,对微博中隐含主题的挖掘,具有较高的舆情监控和商业推广价值.尽管概率生成主题模型LDA(Latent Dirichlet Allocation)在主题挖掘方面已经得到了广泛的应用,但由于微博短文本消息语义稀疏以及文本之间相互关联等特点,传统的LDA模型并不能很好地对它进行建模.为此,基于LDA模型,综合考虑微博的文本关联关系和联系人关联关系,提出了适用于处理微博用户关系数据的UR-LDA模型,并采用吉布斯抽样对模型进行推导.真实数据集上的实验结果表明,UR-LDA模型能有效地对微博进行主题挖掘.
推荐文章
基于权重微博链的改进LDA微博主题模型
短文本
主题挖掘
微博链
潜在狄利克雷分布
perplexity
MB-HL模型的微博主题挖掘研究
微博
主题挖掘
潜在狄利克雷分布模型
隐马尔可夫模型
MB-HL模型
Gibbs采样
基于权重微博链的改进LDA微博主题模型
短文本
主题挖掘
微博链
潜在狄利克雷分布
perplexity
一种面向微博主题挖掘的改进LDA模型
新浪微博
文本挖掘
RT-LDA
吉布斯抽样
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于UR-LDA的微博主题挖掘
来源期刊 计算机技术与发展 学科 工学
关键词 微博 主题挖掘 UR-LDA 吉布斯抽样
年,卷(期) 2017,(6) 所属期刊栏目 应用开发研究
研究方向 页码范围 173-177,182
页数 6页 分类号 TP31
字数 4763字 语种 中文
DOI 10.3969/j.issn.1673-629X.2017.06.036
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 邵曦 南京邮电大学通信与信息工程学院 27 90 6.0 8.0
2 陈阳 南京邮电大学通信与信息工程学院 3 14 2.0 3.0
3 赵海博 1 9 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (181)
参考文献  (8)
节点文献
引证文献  (9)
同被引文献  (18)
二级引证文献  (16)
1990(3)
  • 参考文献(1)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(4)
  • 参考文献(2)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(7)
  • 引证文献(6)
  • 二级引证文献(1)
2019(11)
  • 引证文献(2)
  • 二级引证文献(9)
2020(6)
  • 引证文献(0)
  • 二级引证文献(6)
研究主题发展历程
节点文献
微博
主题挖掘
UR-LDA
吉布斯抽样
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导