基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对大规模社交网络及其用户发布消息的历史数据,如何快速有效地选取具有较强信息传播能力的关键用户,提出了一种关键用户选取方法.首先,利用社交网络的结构信息,构建以用户为节点的有向图,利用用户发布消息的历史数据,基于Spark计算框架,定量计算由用户活跃度、转发交互度和信息量占比刻画的权重,从而构建社交网络的有向带权图模型;然后,借鉴PageRank算法,建立用户信息传播能力的度量机制,给出基于Spark的大规模社交网络中用户信息传播能力的计算方法;进而,给出基于Spark的d-距选取算法,通过多次迭代,使得所选取的不同关键用户的信息传播范围尽量少地重叠.建立在新浪微博数据上的实验结果表明,所提方法具有高效性、可行性和可扩展性,对于控制不良突发信息传播、社交网络真情监控具有一定的支撑作用.
推荐文章
基于用户关系的跨社交网络用户身份关联方法
用户关系
跨社交网络
用户身份关联
网络表示学习
多层感知机
面向大规模信息的用户分类方法研究
用户分类
支持向量机
隐私保护
大规模信息
基于用户信息的社交网络信任评估方法
社交网络
信任评估
数据聚类
融合社交网络与关键用户的并行协同过滤推荐算法
社交网络
并行化
关键用户
协同过滤
大数据
电影推荐
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 大规模社交网络中高效的关键用户选取方法
来源期刊 计算机应用 学科 工学
关键词 大规模社交网络 信息传播能力 关键用户 PageRank Spark
年,卷(期) 2017,(11) 所属期刊栏目 第十六届中国机器学习会议(CCML 2017)
研究方向 页码范围 3101-3106
页数 6页 分类号 TP391.41
字数 7748字 语种 中文
DOI 10.11772/j.issn.1001-9081.2017.11.3101
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 岳昆 云南大学信息学院 77 317 10.0 13.0
2 张学杰 云南大学信息学院 40 337 9.0 16.0
3 尹子都 云南大学信息学院 5 12 2.0 3.0
4 郑永广 云南大学信息学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (100)
共引文献  (245)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1953(1)
  • 参考文献(0)
  • 二级参考文献(1)
1960(1)
  • 参考文献(0)
  • 二级参考文献(1)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1966(1)
  • 参考文献(0)
  • 二级参考文献(1)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(3)
  • 参考文献(0)
  • 二级参考文献(3)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(3)
  • 参考文献(0)
  • 二级参考文献(3)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(4)
  • 参考文献(0)
  • 二级参考文献(4)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(7)
  • 参考文献(0)
  • 二级参考文献(7)
2012(9)
  • 参考文献(0)
  • 二级参考文献(9)
2013(10)
  • 参考文献(1)
  • 二级参考文献(9)
2014(9)
  • 参考文献(5)
  • 二级参考文献(4)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
大规模社交网络
信息传播能力
关键用户
PageRank
Spark
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用
月刊
1001-9081
51-1307/TP
大16开
成都237信箱
62-110
1981
chi
出版文献量(篇)
20189
总下载数(次)
40
论文1v1指导