原文服务方: 计算机应用研究       
摘要:
针对面向微博的中文新闻摘要的主要挑战,提出了一种将矩阵分解与子模最大化相结合的新闻自动摘要方法.该方法首先利用正交矩阵分解模型得到新闻文本潜语义向量,解决了短文本信息稀疏问题,并使投影方向近似正交以减少冗余;然后从相关性和多样性等方面评估新闻语句集合,该评估函数由多个单调子模函数和一个评估语句不相似度的非子模函数组成;最后设计贪心算法生成最终摘要.在NLPCC2015数据集上的实验结果表明,该方法能有效提高面向微博的新闻自动摘要质量,ROUGE得分超过其他基线系统.
推荐文章
基于非负多矩阵分解的微博网络信息推荐
微博网络
推荐
非负多矩阵分解
好友
主题
面向微博的情感影响最大化模型
情感分析
社交网络
影响最大化
基于联合概率矩阵分解的微博关注推荐算法
微博关注推荐
联合概率矩阵分解
关系相似度
影响力模型
基于熵最大化和亮度保持的局部直方图均衡
熵最大化
亮度保持
局部直方图均衡
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于矩阵分解和子模最大化的微博新闻摘要方法
来源期刊 计算机应用研究 学科
关键词 子模属性 正交矩阵分解 新闻摘要 抽取式摘要 微博
年,卷(期) 2017,(10) 所属期刊栏目 算法研究探讨
研究方向 页码范围 2892-2896,2928
页数 6页 分类号 TP391.1
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2017.10.003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 姬东鸿 武汉大学计算机学院 92 887 16.0 26.0
2 孙锐 武汉大学计算机学院 7 31 3.0 5.0
3 刘彼洋 武汉大学计算机学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (3)
共引文献  (8)
参考文献  (3)
节点文献
引证文献  (2)
同被引文献  (5)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
子模属性
正交矩阵分解
新闻摘要
抽取式摘要
微博
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导