基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
频繁模式挖掘的模式数量通常过于巨大,在实际应用中只有少量的频繁模式被使用.Top-k频繁模式挖掘通过排列模式频数限制频繁模式的数量,有效提高了算法效率.提出了TPN(Top-k-Patterns based on Nodesets)算法,该算法使用了节点集的概念,将数据压缩于Poc-tree,通过Top-k-rank表重新计算最小支持度限制生成候选模式的数量.实验通过与ATFP,Top-k-FP-growth算法比较,证明该算法有较好的效率.
推荐文章
基于MapReduce的top-k高效用模式挖掘算法
数据挖掘
top-k
高效用模式
MapReduce
并行算法
一种快速挖掘top-k高效用模式的算法
高效用模式
top-k模式挖掘
效用挖掘
数据挖掘
移动社会网络信息传播模型构建与top-k节点挖掘
信息传播模型
移动社会网络
top-k节点挖掘算法
动态数据库中增量Top-k高效用模式挖掘算法
增量挖掘
效用挖掘
Top-k模式挖掘
动态数据库
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于节点集Top-k频繁模式挖掘算法
来源期刊 计算机工程与应用 学科 工学
关键词 数据挖掘 top-k 频繁模式 节点集
年,卷(期) 2017,(6) 所属期刊栏目 大数据与云计算
研究方向 页码范围 101-105
页数 5页 分类号 TP301.6
字数 4325字 语种 中文
DOI 10.3778/j.issn.1002-8331.1508-0158
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张曦煌 江南大学物联网工程学院 134 1137 14.0 27.0
2 孙俊 江南大学物联网工程学院 186 1552 21.0 30.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (11)
共引文献  (12)
参考文献  (7)
节点文献
引证文献  (3)
同被引文献  (9)
二级引证文献  (0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(2)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
数据挖掘
top-k
频繁模式
节点集
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导