基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于遗传疾病与某些遗传基因位点存在的较强关联性,并考虑到位点间存在交互作用的情形,提出了关联性最强的位点组合的筛选方法.将每个候选位点组合对应的基于神经网络的预报准确率作为评价标准,用粒子群算法(PSO)通过迭代逼近找出最优的位点组合,并与神经网络权重分析法进行比较.结果表明,由本文方法得到的位点组合预报精度更高,对患病情况有着较好的识别效果,可为遗传疾病诊断等提供参考方法.
推荐文章
基于改进粒子群优化算法的神经网络设计
粒子群算法
蚁群算法
信息素
神经网络设计
基于混沌粒子群算法的神经网络短时交通流预测
交通流量
预测
混沌粒子群
神经网络
基于粒子群优化神经网络的卫星故障预测方法
故障预测
卫星
粒子群优化
神经网络
时间序列
混合粒子群优化算法优化前向神经网络结构和参数
粒子群优化
神经网络
故障诊断
遗传算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于神经网络和粒子群算法的遗传位点与患病信息的关联性分析
来源期刊 北京化工大学学报(自然科学版) 学科 经济
关键词 遗传位点 交互作用 粒子群算法(PSO) 神经网络
年,卷(期) 2018,(1) 所属期刊栏目 管理与数理科学
研究方向 页码范围 97-102
页数 6页 分类号 F064.1
字数 5018字 语种 中文
DOI 10.13543/j.bhxbzr.2018.01.016
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李志强 北京化工大学理学院 24 48 5.0 6.0
2 李杰 北京化工大学经济管理学院 14 51 4.0 7.0
3 刘晓 北京化工大学经济管理学院 11 86 6.0 9.0
4 闫白鹭 北京化工大学理学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (34)
共引文献  (1)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(7)
  • 参考文献(1)
  • 二级参考文献(6)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(6)
  • 参考文献(3)
  • 二级参考文献(3)
2015(3)
  • 参考文献(2)
  • 二级参考文献(1)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
遗传位点
交互作用
粒子群算法(PSO)
神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
北京化工大学学报(自然科学版)
双月刊
1671-4628
11-4755/TQ
16开
北京市北三环东路15号
82-657
1972
chi
出版文献量(篇)
3271
总下载数(次)
7
总被引数(次)
27609
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导