基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Synchrotron radiation based experimental techniques known as Anomalous Small-Angle X-ray Scattering (ASAXS) provide deep insight into the nanostructure of uncountable material systems in condensed matter research i.e. solid state physics, chemistry, engineering and life sciences thereby rendering the origin of the macroscopic functionalization of the various materials via correlation to its structural architecture on a nanometer length scale. The techniques constitute a system of linear equations, which can be treated by matrix theory. The study aims to analyze the significance of the solutions of the stated matrix equations by use of the so-called condition numbers first introduced by A. Turing, J. von Neumann and H. Goldstine. Special attention was given for the comparison with direct methods i.e. the Gaussian elimination method. The mathematical roots of ill-posed ASAXS equations preventing matrix inversion have been identified. In the framework of the theory of von Neumann and Goldstine the inversion of certain matrices constituted by ASAXS gradually becomes impossible caused by non-definiteness. In Turing’s theory which starts from more general prerequisites, the principal minors of the same matrices approach singularity thereby imposing large errors on inversion. In conclusion both theories recommend for extremely ill-posed ASAXS problems avoiding inversion and the use of direct methods for instance Gaussian elimination.
推荐文章
低能量X-RAY测厚仪与β-RAY
测厚仪
薄膜
应用
比较
高分辨X-RAY成像系统的搭建及其血管造影研究
血管造影
后肢缺血模型
高分辨率X光机
基于X-Ray CT试验的塌陷区回填体孔隙结构研究
地表塌陷区
回填体
X-Ray CT
三维重构
孔隙结构
基于EPICS的X射线小角散射实验站控制和数据采集系统
X射线小角散射
实验物理及工业控制系统
控制系统工具箱
数据采集系统
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 The Significance of Solutions Obtained from Ill-Posed Systems of Linear Equations Constituted by Synchrotron Radiation Based Anomalous Small-Angle X-Ray Scattering
来源期刊 线性代数与矩阵理论研究进展(英文) 学科 数学
关键词 Matrix Inversion Condition Numbers LU-Decomposition GAUSSIAN ELIMINATION SYNCHROTRON Radiation ANOMALOUS SMALL-ANGLE X-Ray Scattering
年,卷(期) 2018,(1) 所属期刊栏目
研究方向 页码范围 64-86
页数 23页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Matrix
Inversion
Condition
Numbers
LU-Decomposition
GAUSSIAN
ELIMINATION
SYNCHROTRON
Radiation
ANOMALOUS
SMALL-ANGLE
X-Ray
Scattering
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
线性代数与矩阵理论研究进展(英文)
季刊
2165-333X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
93
总下载数(次)
0
总被引数(次)
0
论文1v1指导