基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在图像分类识别中,对于同一目标的不同图像,其训练样本和测试样本在同一位置的像素强度通常不同,这不利于提取目标图像的显著特征.这里给出一种基于稀疏表示的联合表示的图像分类方法,此方法首先利用相邻列之间的关系得到原始图像对应的虚拟图像,利用虚拟图像提高图像中中等强度像素的作用,降低过大或过小强度像素对图像分类的影响;然后用同一个目标的原始图像和虚拟图像一起表示目标,得到目标图像的联合表示;最后利用联合表示方法对目标分类.针对不同目标图像库的实验研究表明,给出的联合方法优于利用单一图像进行分类的方法,而且本方法能联合不同的表示方法来提高图像分类正确率.
推荐文章
一种基于K-均值分类稀疏表示的灰度图像颜色重建方法
颜色重建
稀疏表示
K-均值
残差补偿
一种基于图像特征的图像分类方法
图像特征
图像分类
颜色
纹理
边缘特征
一种基于形状特征的图像分类方法
形状特征
图像分类
聚类
动态时间弯曲
基于多任务联合稀疏表示的高光谱图像分类算法
多任务学习
稀疏表示
高光谱图像
图像分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于联合表示的图像分类方法
来源期刊 智能系统学报 学科 工学
关键词 图像分类 图像识别 联合表示 虚拟图像 像素强度 稀疏表示 小样本 相邻列
年,卷(期) 2018,(2) 所属期刊栏目
研究方向 页码范围 220-226
页数 7页 分类号 TP391
字数 5919字 语种 中文
DOI 10.11992/tis.201611036
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王雷 哈尔滨工程大学自动化学院 36 230 8.0 14.0
2 马忠丽 哈尔滨工程大学自动化学院 57 506 14.0 19.0
3 刘权勇 哈尔滨工程大学自动化学院 1 0 0.0 0.0
4 武凌羽 哈尔滨工程大学自动化学院 2 4 1.0 2.0
5 张长毛 哈尔滨工程大学自动化学院 2 4 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (30)
共引文献  (10)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(2)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(4)
  • 参考文献(2)
  • 二级参考文献(2)
2011(6)
  • 参考文献(1)
  • 二级参考文献(5)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(7)
  • 参考文献(1)
  • 二级参考文献(6)
2015(3)
  • 参考文献(2)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像分类
图像识别
联合表示
虚拟图像
像素强度
稀疏表示
小样本
相邻列
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能系统学报
双月刊
1673-4785
23-1538/TP
大16开
哈尔滨市南岗区南通大街145-1号楼
2006
chi
出版文献量(篇)
2770
总下载数(次)
11
总被引数(次)
12401
论文1v1指导