原文服务方: 计算机应用研究       
摘要:
针对高光谱图像的分类问题进行了研究,提出一种基于联合协同表示(JCR)与支持向量机(SVM)模型的决策融合分类方法.首先采用联合协同表示模型对样本与字典进行多元素分解并分别进行相应的协同表示,自适应地学习多元素的残差权重并进行线性加权;其次用灰度共生矩阵计算出的统计特征量来训练多类SVM分类器;最后建立一种乘法融合规则将JCR与SVM相结合.在两个标准数据集上的实验结果表明,该方法比其他方法具有更好的性能.
推荐文章
基于多任务联合稀疏表示的高光谱图像分类算法
多任务学习
稀疏表示
高光谱图像
图像分类
基于降维Gabor特征和决策融合的高光谱图像分类
高光谱图像
分类
Gabor特征
高斯混合模型
决策融合
PCA投影
基于SSAE深度学习特征表示的高光谱遥感图像分类方法
高光谱遥感图像分类
堆叠稀疏自动编码器
深度学习
特征表示
支持向量机
利用特征子空间评价与多分类器融合的高光谱图像分类
高光谱图像
多分类器融合
自适应子空间分解
加权表决
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于联合协同表示与SVM决策融合的高光谱图像分类研究
来源期刊 计算机应用研究 学科
关键词 协同表示 高光谱图像分类 决策融合 支持向量机
年,卷(期) 2017,(6) 所属期刊栏目 图形图像技术
研究方向 页码范围 1913-1916,1920
页数 5页 分类号 TP751
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2017.06.072
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李铁 辽宁工程技术大学电子与信息工程学院 10 63 6.0 7.0
2 张新君 大连理工大学计算机科学与技术学院 5 39 4.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (28)
参考文献  (14)
节点文献
引证文献  (7)
同被引文献  (13)
二级引证文献  (1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(10)
  • 参考文献(10)
  • 二级参考文献(0)
2015(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(5)
  • 引证文献(4)
  • 二级引证文献(1)
研究主题发展历程
节点文献
协同表示
高光谱图像分类
决策融合
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导