基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Traffic sign recognition (TSR, or Road Sign Recognition, RSR) is one of the Advanced Driver Assistance System (ADAS) devices in modern cars. To concern the most important issues, which are real-time and resource efficiency, we propose a high efficiency hardware implementation for TSR. We divide the TSR procedure into two stages, detection and recognition. In the detection stage, under the assumption that most German traffic signs have red or blue colors with circle, triangle or rectangle shapes, we use Normalized RGB color transform and Single-Pass Connected Component Labeling (CCL) to find the potential traffic signs efficiently. For Single-Pass CCL, our contribution is to eliminate the “merge-stack” operations by recording connected relations of region in the scan phase and updating the labels in the iterating phase. In the recognition stage, the Histogram of Oriented Gradient (HOG) is used to generate the descriptor of the signs, and we classify the signs with Support Vector Machine (SVM). In the HOG module, we analyze the required minimum bits under different recognition rate. The proposed method achieves 96.61% detection rate and 90.85% recognition rate while testing with the GTSDB dataset. Our hardware implementation reduces the storage of CCL and simplifies the HOG computation. Main CCL storage size is reduced by 20% comparing to the most advanced design under typical condition. By using TSMC 90 nm technology, the proposed design operates at 105 MHz clock rate and processes in 135 fps with the image size of 1360 × 800. The chip size is about 1 mm2 and the power consumption is close to 8 mW. Therefore, this work is resource efficient and achieves real-time requirement.
推荐文章
免疫捕捉real-time PCR对蚜虫中CMV检测体系的建立与应用
免疫捕捉real-time PCR
黄瓜花叶病毒(CMV)
蚜虫
Real-time PCR方法检测肉品中的沙门氏菌
沙门氏菌
Real-time PCR
快速检测
肉品
Real-time PCR、焦磷酸测序及基因芯片快速检测ALDH2?2基因多态性
ALDH2
多态性
焦磷酸测序
Real-time PCR
基因芯片
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Resource Efficient Hardware Implementation for Real-Time Traffic Sign Recognition
来源期刊 交通科技期刊(英文) 学科 工学
关键词 TRAFFIC SIGN Recognition Advanced Driver ASSISTANCE System REAL-TIME Processing Color Segmentation Connected Component Analysis Histo-gram of Oriented Gradient Support Vector Machine German TRAFFIC SIGN Detection BENCHMARK CMOS ASIC VLSI
年,卷(期) 2018,(3) 所属期刊栏目
研究方向 页码范围 209-231
页数 23页 分类号 TP39
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
TRAFFIC
SIGN
Recognition
Advanced
Driver
ASSISTANCE
System
REAL-TIME
Processing
Color
Segmentation
Connected
Component
Analysis
Histo-gram
of
Oriented
Gradient
Support
Vector
Machine
German
TRAFFIC
SIGN
Detection
BENCHMARK
CMOS
ASIC
VLSI
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
交通科技期刊(英文)
季刊
2160-0473
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
254
总下载数(次)
0
总被引数(次)
0
论文1v1指导