基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
This research uses random networks as benchmarks for inferential tests of network structures. Specifically, we develop formulas for expected values and confidence intervals for four frequently employed social network centrality indices. The first study begins with analyses of stylized networks, which are then perturbed with increasing levels of random noise. When the indices achieve their values for fully random networks, the indices reveal systematic relationships that generalize across network forms. The second study then delves into the relationships between numbers of actors in a network and the density of a network for each of the centrality indices. In doing so, expected values are easily calculated, which in turn enable chi-square tests of network structure. Furthermore, confidence intervals are developed to facilitate a network analyst’s understanding as to which patterns in the data are merely random, versus which are structurally significantly distinct.
推荐文章
用于网格计算的Overlay Network 设计算法的研究
网格架构
Overlay Network
拓扑结构
拉格朗日松驰
NETWORK6000系统在酸站车间的应用
集散控制
联锁控制
NETWORK6000
粘胶短纤
闪蒸
基于Overlay Network协同选播通信机制的研究
OverlayNetwork
协同选播机制
负载均衡
Petri网
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Confidence Intervals for Assessing Sizes of Social Network Centralities
来源期刊 社交网络(英文) 学科 医学
关键词 CENTRALITY Degree CLOSENESS BETWEENNESS EIGENVECTOR CENTRALITY Social Networks
年,卷(期) 2018,(4) 所属期刊栏目
研究方向 页码范围 220-242
页数 23页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
CENTRALITY
Degree
CLOSENESS
BETWEENNESS
EIGENVECTOR
CENTRALITY
Social
Networks
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
社交网络(英文)
季刊
2169-3285
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
112
总下载数(次)
0
总被引数(次)
0
论文1v1指导