钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
基础科学期刊
\
大学学报期刊
\
四川大学学报(自然科学版)期刊
\
基于概率后缀树的股票时间序列预测方法研究
基于概率后缀树的股票时间序列预测方法研究
作者:
李旭伟
程小林
郑兴
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
股票数据挖掘
时间序列符号化
高斯混合模型聚类
概率后缀树
摘要:
在时间序列符号化基础上,本文引入概率后缀树PST模型,构建基于时间序列符号化和概率后缀树相结合的股票预测模型.本文选择在沪深300的10支股票数据上将预测模型与传统的马尔科夫模型MM和自回归移动平均模型ARMA进行对比,结果显示本文提出的股票预测模型优于MM模型和ARMA模型,验证了本文所提出的预测模型在投资收益上的有效性.
暂无资源
收藏
引用
分享
推荐文章
基于后缀树词序列核挖掘Web文档
核学习方法
词序列核
字符串核
后缀树
Web挖掘
基于时间序列的支持向量机在股票预测中的应用
支持向量机(SVM)
时间序列
股票预测
基于DMD-LSTM模型的股票价格时间序列预测研究
动态模态分解
长短期记忆神经网络
模态特征
板块联动效应
市场背景
基于概率统计的电力负荷时间序列预测模型
电力负荷预测
概率统计
时间序列
预测模型构建
数据预处理
实验验证
内容分析
文献信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
基于概率后缀树的股票时间序列预测方法研究
来源期刊
四川大学学报(自然科学版)
学科
工学
关键词
股票数据挖掘
时间序列符号化
高斯混合模型聚类
概率后缀树
年,卷(期)
2018,(1)
所属期刊栏目
计算机科学
研究方向
页码范围
61-66
页数
6页
分类号
TP391
字数
5010字
语种
中文
DOI
10.3969/j.issn.0490-6756.2018.01.011
五维指标
作者信息
序号
姓名
单位
发文数
被引次数
H指数
G指数
1
李旭伟
四川大学计算机学院
45
272
9.0
15.0
2
郑兴
四川大学计算机学院
4
6
1.0
2.0
3
程小林
四川大学计算机学院
2
5
1.0
2.0
传播情况
被引次数趋势
(/次)
(/年)
引文网络
引文网络
二级参考文献
(23)
共引文献
(13)
参考文献
(11)
节点文献
引证文献
(4)
同被引文献
(5)
二级引证文献
(0)
1953(1)
参考文献(0)
二级参考文献(1)
1984(1)
参考文献(0)
二级参考文献(1)
1987(1)
参考文献(0)
二级参考文献(1)
1996(1)
参考文献(0)
二级参考文献(1)
1998(1)
参考文献(0)
二级参考文献(1)
2003(1)
参考文献(0)
二级参考文献(1)
2004(4)
参考文献(1)
二级参考文献(3)
2006(3)
参考文献(0)
二级参考文献(3)
2007(1)
参考文献(0)
二级参考文献(1)
2008(3)
参考文献(1)
二级参考文献(2)
2009(1)
参考文献(0)
二级参考文献(1)
2010(1)
参考文献(1)
二级参考文献(0)
2011(3)
参考文献(2)
二级参考文献(1)
2013(3)
参考文献(1)
二级参考文献(2)
2014(3)
参考文献(0)
二级参考文献(3)
2015(4)
参考文献(3)
二级参考文献(1)
2016(1)
参考文献(1)
二级参考文献(0)
2017(1)
参考文献(1)
二级参考文献(0)
2018(2)
参考文献(0)
二级参考文献(0)
引证文献(2)
二级引证文献(0)
2018(2)
引证文献(2)
二级引证文献(0)
2019(2)
引证文献(2)
二级引证文献(0)
研究主题发展历程
节点文献
股票数据挖掘
时间序列符号化
高斯混合模型聚类
概率后缀树
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
四川大学学报(自然科学版)
主办单位:
四川大学
出版周期:
双月刊
ISSN:
0490-6756
CN:
51-1595/N
开本:
大16开
出版地:
成都市九眼桥望江路29号
邮发代号:
62-127
创刊时间:
1955
语种:
chi
出版文献量(篇)
5772
总下载数(次)
10
总被引数(次)
25503
相关基金
国家自然科学基金
英文译名:
the National Natural Science Foundation of China
官方网址:
http://www.nsfc.gov.cn/
项目类型:
青年科学基金项目(面上项目)
学科类型:
数理科学
期刊文献
相关文献
1.
基于后缀树词序列核挖掘Web文档
2.
基于时间序列的支持向量机在股票预测中的应用
3.
基于DMD-LSTM模型的股票价格时间序列预测研究
4.
基于概率统计的电力负荷时间序列预测模型
5.
基于机器学习的股票预测研究综述
6.
时间序列一步预测方法
7.
广义后缀树的概念生成算法
8.
基于后缀自动机的轨迹模式挖掘方法
9.
基于粒子滤波的混沌时间序列局域多步预测
10.
基于两种方式的股票时间序列关联的研究
11.
基于后缀树的知识点间关联规则挖掘算法
12.
基于后缀树思想构造Web生物数据搜索的数据模型
13.
模糊时间序列的最优预测方法
14.
基于神经树的时间序列预测
15.
基于时间序列的支持向量机在股票预测中的应用
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
力学
化学
地球物理学
地质学
基础科学综合
大学学报
天文学
天文学、地球科学
数学
气象学
海洋学
物理学
生物学
生物科学
自然地理学和测绘学
自然科学总论
自然科学理论与方法
资源科学
非线性科学与系统科学
四川大学学报(自然科学版)2022
四川大学学报(自然科学版)2021
四川大学学报(自然科学版)2020
四川大学学报(自然科学版)2019
四川大学学报(自然科学版)2018
四川大学学报(自然科学版)2017
四川大学学报(自然科学版)2016
四川大学学报(自然科学版)2015
四川大学学报(自然科学版)2014
四川大学学报(自然科学版)2013
四川大学学报(自然科学版)2012
四川大学学报(自然科学版)2011
四川大学学报(自然科学版)2010
四川大学学报(自然科学版)2009
四川大学学报(自然科学版)2008
四川大学学报(自然科学版)2007
四川大学学报(自然科学版)2006
四川大学学报(自然科学版)2005
四川大学学报(自然科学版)2004
四川大学学报(自然科学版)2003
四川大学学报(自然科学版)2002
四川大学学报(自然科学版)2001
四川大学学报(自然科学版)2000
四川大学学报(自然科学版)1999
四川大学学报(自然科学版)2018年第6期
四川大学学报(自然科学版)2018年第5期
四川大学学报(自然科学版)2018年第4期
四川大学学报(自然科学版)2018年第3期
四川大学学报(自然科学版)2018年第2期
四川大学学报(自然科学版)2018年第1期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号