作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的基于图书和读者的协同过滤方法缺乏语义知识,易混杂不符合读者喜好的噪音数据,从而影响聚类效果和推荐的准确度.针对该问题,提出一种基于K-means的语义协同过滤推荐算法.为了反映读者对图书的偏爱程度,首先定义读者-图书关联矩阵,然后通过K-means聚类算法寻找相邻集合,在聚类过程中兼顾关联矩阵和语义知识,分别计算读者和图书的相似度,最后通过相似程度排序向用户推荐图书.结果表明,该算法在保证计算效率的情况下能显著提高推荐的准确度.
推荐文章
基于NKL和K-means聚类的协同过滤推荐算法
协同过滤
推荐算法
矩阵稀疏
K-means
相似性度量
基于密度的动态协同过滤图书推荐算法
协同过滤
个性化推荐
动态
相似度
基于用户引力的协同过滤推荐算法
推荐算法
协同过滤推荐
万有引力定律
社会标签
基于用户历史行为的协同过滤推荐算法
数据挖掘
协同过滤
用户偏好
项目相似度
个性化推荐
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于K-means的语义协同过滤推荐算法
来源期刊 扬州大学学报(自然科学版) 学科 工学
关键词 推荐 协同过滤 语义 K-means算法
年,卷(期) 2018,(1) 所属期刊栏目
研究方向 页码范围 46-49
页数 4页 分类号 TP391.3|G254.924
字数 语种 中文
DOI 10.19411/j.1007-824x.2018.01.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 印国成 13 25 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (31)
共引文献  (30)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(10)
  • 参考文献(2)
  • 二级参考文献(8)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
推荐
协同过滤
语义
K-means算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
扬州大学学报(自然科学版)
季刊
1007-824X
32-1472/N
大16开
江苏省扬州市大学南路88号
28-48
1974
chi
出版文献量(篇)
1577
总下载数(次)
2
总被引数(次)
8111
论文1v1指导