基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对工控网络异常行为与入侵行为的差异性,为降低漏报率和误报率并且为提高异常检测的准确率,提出基于单类支持向量机的双轮廓模型异常检测方法,模拟工控系统通讯的正常模态和异常模态,通过协同判别机制实现工控系统网络的异常检测.同时,为减小单类支持向量机建模时间与检测时间,选取自编码网络对提取的网络流量数据进行输入自变量降维和压缩处理,并且抑制了单类支持向量机模型的过拟合现象.基于自编码网络的单类支持向量机双轮廓模型的异常检测方法,通过对模型的仿真验证,可以看出工控系统漏报率和误报率明显降低,检测时间有所缩短,对工控系统异常检测的研究有较大的应用价值.
推荐文章
基于遗传算法优化的OCSVM双轮廓模型异常检测算法
工业控制系统
异常检测
遗传算法
单类支持向量机
双轮廓模态
基于SSIM稀疏自编码网络的异常事件检测
结构相似性
稀疏自编码
马氏距离
反向传播
基于稀疏自编码特征聚类算法的图像窜改检测
稀疏自编码
K-means聚类算法
同图复制
块匹配
基于集成降噪自编码的在线网络入侵检测模型
网络安全
入侵检测
降噪自编码网络
CICIDS2017数据集
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 工控通信行为的自编码特征降维和双轮廓模型异常检测方法
来源期刊 小型微型计算机系统 学科 工学
关键词 工业控制系统 异常检测 单类支持向量机 双轮廓模态 自编码网络 特征降维
年,卷(期) 2018,(7) 所属期刊栏目 人工智能与算法研究
研究方向 页码范围 1405-1409
页数 5页 分类号 TP393
字数 5906字 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (42)
共引文献  (55)
参考文献  (11)
节点文献
引证文献  (3)
同被引文献  (12)
二级引证文献  (0)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(7)
  • 参考文献(1)
  • 二级参考文献(6)
2015(12)
  • 参考文献(2)
  • 二级参考文献(10)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(4)
  • 参考文献(4)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
工业控制系统
异常检测
单类支持向量机
双轮廓模态
自编码网络
特征降维
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
小型微型计算机系统
月刊
1000-1220
21-1106/TP
大16开
辽宁省沈阳市东陵区南屏东路16号
8-108
1980
chi
出版文献量(篇)
11026
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导