基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
人脸关键点检测是计算机视觉领域的一个重要分支,其检测精度将在很大程度上影响人脸识别和表情分析的结果.提出一种新的解决人脸关键点检测问题的方法,即H-GBDT.H-GBDT是一种基于GBDT决策树和HOG特征的人脸关键点检测算法,该算法是将人脸图像的HOG特征作为GBDT的输入,关键点的真实坐标作为GBDT的输出来训练预测模型,在该过程中每个关键点将分纵坐标和横坐标两次在GBDT中做回归运算,并经过不断的调整GBDT和HOG特征的参数来训练出最佳预测模型.在BioID、LFW、LFPW三种数据集上验证H-GB-DT算法的性能.BioID是正脸数据集,实验结果表明H-GDBT在该数据集上的检测效果最佳,其检测误差基本上可控制在2%以内;而LFW和LFPW是自然场景下的数据集,H-GBDT在这两种数据集上的检测误差一般在2%~4%之间.
推荐文章
基于并行卷积神经网络的人脸关键点定位方法研究
人脸特征点定位
卷积神经网络
图像卷积
下图像采样
基于小波变换和梯度矢量的人脸特征点定位
小波变换
特征点定位
对称变换
融合
基于分类外形搜索的人脸特征点定位
人脸外形搜索
随机森林
级联回归
人脸特征点定位
由粗到精
CASPN:基于级联空间金字塔的人脸关键点定位网络
空洞卷积
空间金字塔
级联网络
人脸关键点定位
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于GBDT和HOG特征的人脸关键点定位
来源期刊 河南大学学报(自然科学版) 学科 工学
关键词 人脸关键点检测 人脸特征 GBDT HOG
年,卷(期) 2018,(2) 所属期刊栏目 自动化基础理论与信息技术
研究方向 页码范围 214-222
页数 9页 分类号 TP391
字数 5934字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张重生 河南大学计算机与信息工程学院 4 13 2.0 3.0
2 彭国雯 河南大学计算机与信息工程学院 1 4 1.0 1.0
3 于珂珂 河南大学计算机与信息工程学院 1 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (2)
共引文献  (44)
参考文献  (8)
节点文献
引证文献  (4)
同被引文献  (13)
二级引证文献  (1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(5)
  • 引证文献(4)
  • 二级引证文献(1)
研究主题发展历程
节点文献
人脸关键点检测
人脸特征
GBDT
HOG
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
河南大学学报(自然科学版)
双月刊
1003-4978
41-1100/N
大16开
河南省开封市明伦街85号
36-27
1934
chi
出版文献量(篇)
2535
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导